Hindman spaces
HTML articles powered by AMS MathViewer
- by Menachem Kojman
- Proc. Amer. Math. Soc. 130 (2002), 1597-1602
- DOI: https://doi.org/10.1090/S0002-9939-01-06238-4
- Published electronically: December 20, 2001
- PDF | Request permission
Abstract:
A topological space $X$ is Hindman if for every sequence $(x_n)_n$ in $X$ there exists an infinite $D\subseteq \mathbb {N}$ so that the sequence $(x_n)_{n\in FS(D)}$, indexed by all finite sums over $D$, is IP-converging in $X$. Not all sequentially compact spaces are Hindman. The product of two Hindman spaces is Hindman.
Furstenberg and Weiss proved that all compact metric spaces are Hindman. We show that every Hausdorff space $X$ that satisfies the following condition is Hindman: \[ \text {($*$)\quad The closure of every countable set in $X$ is compact and first-countable.\quad } \]
Consequently, there exist nonmetrizable and noncompact Hindman spaces. The following is a particular consequence of the main result: every bounded sequence of monotone (not necessarily continuous) real functions on $[0,1]$ has an IP-converging subsequences.
References
- James E. Baumgartner, A short proof of Hindman’s theorem, J. Combinatorial Theory Ser. A 17 (1974), 384–386. MR 354394, DOI 10.1016/0097-3165(74)90103-4
- Vitaly Bergelson, Ergodic Ramsey theory—an update, Ergodic theory of $\textbf {Z}^d$ actions (Warwick, 1993–1994) London Math. Soc. Lecture Note Ser., vol. 228, Cambridge Univ. Press, Cambridge, 1996, pp. 1–61. MR 1411215, DOI 10.1017/CBO9780511662812.002
- Vitaly Bergelson and Neil Hindman, Nonmetrizable topological dynamics and Ramsey theory, Trans. Amer. Math. Soc. 320 (1990), no. 1, 293–320. MR 982232, DOI 10.1090/S0002-9947-1990-0982232-5
- H. Furstenberg and B. Weiss, Topological dynamics and combinatorial number theory, J. Analyse Math. 34 (1978), 61–85 (1979). MR 531271, DOI 10.1007/BF02790008
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625, DOI 10.1515/9781400855162
- Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer, Ramsey theory, 2nd ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1990. A Wiley-Interscience Publication. MR 1044995
- Neil Hindman and Dona Strauss, Algebra in the Stone-Čech compactification, De Gruyter Expositions in Mathematics, vol. 27, Walter de Gruyter & Co., Berlin, 1998. Theory and applications. MR 1642231, DOI 10.1515/9783110809220
- Neil Hindman, Finite sums from sequences within cells of a partition of $N$, J. Combinatorial Theory Ser. A 17 (1974), 1–11. MR 349574, DOI 10.1016/0097-3165(74)90023-5
- Neil Hindman, Ultrafilters and combinatorial number theory, Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979) Lecture Notes in Math., vol. 751, Springer, Berlin, 1979, pp. 119–184. MR 564927
- Neil Hindman, Partitions and sums and products of integers, Trans. Amer. Math. Soc. 247 (1979), 227–245. MR 517693, DOI 10.1090/S0002-9947-1979-0517693-4
- M. Kojman, Van der Waerden spaces, Proc. AMS, to appear.
- Lynn Arthur Steen and J. Arthur Seebach Jr., Counterexamples in topology, 2nd ed., Springer-Verlag, New York-Heidelberg, 1978. MR 507446, DOI 10.1007/978-1-4612-6290-9
- B. L. van der Waerden, Beweis eine Baudetschen Vermutung Nieus Arch. Wisk., 15:212–216, 1927.
Bibliographic Information
- Menachem Kojman
- Affiliation: Department of Mathematics, Ben Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Email: kojman@cs.bgu.ac.il
- Received by editor(s): October 2, 2000
- Received by editor(s) in revised form: December 20, 2000
- Published electronically: December 20, 2001
- Communicated by: Alan Dow
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1597-1602
- MSC (1991): Primary 05C55, 54F65; Secondary 04A20, 11P99, 26A40
- DOI: https://doi.org/10.1090/S0002-9939-01-06238-4
- MathSciNet review: 1887003