LCM-splitting sets in some ring extensions
Authors:
Tiberiu Dumitrescu and Muhammad Zafrullah
Journal:
Proc. Amer. Math. Soc. 130 (2002), 1639-1644
MSC (2000):
Primary 13A05, 13A15; Secondary 13B02, 13B22
DOI:
https://doi.org/10.1090/S0002-9939-01-06301-8
Published electronically:
November 15, 2001
MathSciNet review:
1887010
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a saturated multiplicative set of an integral domain
. Call
an lcm splitting set if
and
are principal ideals for every
and
. We show that if
is an
-stable overring of
(that is, if whenever
and
is principal, it follows that
and if
is an lcm splitting set of
, then the saturation of
in
is an lcm splitting set in
. Consequently, if
is Noetherian and
is a (nonzero) prime element, then
is also a prime element of the integral closure of
. Also, if
is Noetherian,
is generated by prime elements of
and if the integral closure of
is a UFD, then so is the integral closure of
.
- [AAZ] D. D. Anderson, David F. Anderson, and Muhammad Zafrullah, Splitting the 𝑡-class group, J. Pure Appl. Algebra 74 (1991), no. 1, 17–37. MR 1129127, https://doi.org/10.1016/0022-4049(91)90046-5
- [AAZ1] D. D. Anderson, David F. Anderson, and Muhammad Zafrullah, Factorization in integral domains. II, J. Algebra 152 (1992), no. 1, 78–93. MR 1190405, https://doi.org/10.1016/0021-8693(92)90089-5
- [AZ] Daniel D. Anderson and Muhammad Zafrullah, P. M. Cohn’s completely primal elements, Zero-dimensional commutative rings (Knoxville, TN, 1994) Lecture Notes in Pure and Appl. Math., vol. 171, Dekker, New York, 1995, pp. 115–123. MR 1335708
- [AZ1] D. D. ANDERSON, M. ZAFRULLAH, Splitting sets in integral domains, Proc. Amer. Math Soc. 129(2001), 2209-2217. CMP 2001:11
- [ADR] David F. Anderson, David E. Dobbs, and Moshe Roitman, Root closure in commutative rings, Ann. Sci. Univ. Clermont-Ferrand II Math. 26 (1990), 1–11. MR 1112633
- [AHZ] David F. Anderson, Evan G. Houston, and Muhammad Zafrullah, Pseudo-integrality, Canad. Math. Bull. 34 (1991), no. 1, 15–22. MR 1108923, https://doi.org/10.4153/CMB-1991-003-5
- [B] N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs, Actualités Scientifiques et Industrielles, No. 1314, Hermann, Paris, 1965 (French). MR 0260715
- [CMZ] Douglas Costa, Joe L. Mott, and Muhammad Zafrullah, The construction 𝐷+𝑋𝐷_{𝑠}[𝑋], J. Algebra 53 (1978), no. 2, 423–439. MR 506224, https://doi.org/10.1016/0021-8693(78)90289-2
- [DHLZ] David E. Dobbs, Evan G. Houston, Thomas G. Lucas, and Muhammad Zafrullah, 𝑡-linked overrings and Prüfer 𝑣-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835–2852. MR 1025612, https://doi.org/10.1080/00927878908823879
- [DHLRZ] David E. Dobbs, Evan G. Houston, Thomas G. Lucas, Moshe Roitman, and Muhammad Zafrullah, On 𝑡-linked overrings, Comm. Algebra 20 (1992), no. 5, 1463–1488. MR 1157918, https://doi.org/10.1080/00927879208824414
- [F] Robert M. Fossum, The divisor class group of a Krull domain, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74. MR 0382254
- [G] Robert Gilmer, Multiplicative ideal theory, Marcel Dekker, Inc., New York, 1972. Pure and Applied Mathematics, No. 12. MR 0427289
- [MS] Joe L. Mott and Michel Schexnayder, Exact sequences of semi-value groups, J. Reine Angew. Math. 283(284) (1976), 388–401. MR 404247
- [GP] Robert Gilmer and Tom Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65–86. MR 342635
- [S] Uwe Storch, Fastfaktorielle Ringe, Schr. Math. Inst. Univ. Münster 36 (1967), iv+42 (German). MR 214588
- [U] Hirohumi Uda, LCM-stableness in ring extensions, Hiroshima Math. J. 13 (1983), no. 2, 357–377. MR 707189
- [Z] Muhammad Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), no. 1-3, 29–62. MR 788672, https://doi.org/10.1007/BF01168346
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13A05, 13A15, 13B02, 13B22
Retrieve articles in all journals with MSC (2000): 13A05, 13A15, 13B02, 13B22
Additional Information
Tiberiu Dumitrescu
Affiliation:
Facultatea de Matematică, Universitatea Bucureşti, Str. Academiei 14, Bucharest, RO-70190, Romania
Email:
tiberiu@al.math.unibuc.ro
Muhammad Zafrullah
Affiliation:
Department of Mathematics, Idaho State University, Pocatello, Idaho 83209-8085
Email:
zufrmuha@isu.edu
DOI:
https://doi.org/10.1090/S0002-9939-01-06301-8
Keywords:
lcm-splitting set,
$R_{2}$-stable overring,
Noetherian domain
Received by editor(s):
May 24, 2000
Received by editor(s) in revised form:
January 15, 2001
Published electronically:
November 15, 2001
Additional Notes:
The authors gratefully acknowledge the referee’s interest in improving the presentation of this paper.
Communicated by:
Wolmer V. Vasconcelos
Article copyright:
© Copyright 2001
American Mathematical Society