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LCM-SPLITTING SETS IN SOME RING EXTENSIONS
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(Communicated by Wolmer V. Vasconcelos)

Abstract. Let S be a saturated multiplicative set of an integral domain D.
Call S an lcm splitting set if dDS ∩ D and dD ∩ sD are principal ideals for
every d ∈ D and s ∈ S. We show that if R is an R2-stable overring of
D (that is, if whenever a, b ∈ D and aD ∩ bD is principal, it follows that
(aD∩bD)R = aR∩bR) and if S is an lcm splitting set of D, then the saturation
of S in R is an lcm splitting set in R. Consequently, if D is Noetherian
and p ∈ D is a (nonzero) prime element, then p is also a prime element of
the integral closure of D. Also, if D is Noetherian, S is generated by prime
elements of D and if the integral closure of DS is a UFD, then so is the integral
closure of D.

Let D be an integral domain with quotient field K. By an overring of D we mean
a ring between D and K. A saturated multiplicative set S of D is called an lcm
splitting set if (a) for all s ∈ S and for all d ∈ D, sD ∩ dD is principal and (b) for
all d ∈ D\{0} we have d = st, where s ∈ S and (t) ∩ (σ) = (tσ) for all σ ∈ S (this
definition is equivalent to the one given in the abstract; cf. [AAZ1, Lemma 1.2]).
The notion of lcm splitting sets was studied in [AAZ], where it was used to prove
several Nagata-like theorems, i.e., theorems of the form: if S is an lcm splitting
multiplicative set of D and if DS has (a suitable multiplicative) property P, then
so does D (see section 4 of [AAZ]). Following Uda [U], we call a ring extension E
of D R2-stable if aD ∩ bD = cD with a, b, c ∈ D implies aE ∩ bE = cE (that is,
whenever c is an LCM for a, b ∈ D, the same is true for c, a, b in E). The purpose
of this note is to record the consequences of the following result: Let D ⊆ E be an
R2-stable extension of domains, where E is an overring of D. Let S be a saturated
multiplicative set of D and let S′ be the saturation of S in E. If S is a splitting
(resp. lcm splitting) multiplicative set in D, then so is S′ in E respectively. Thus,
to take a familiar example, if E is a flat overring of D, then the saturation, in E,
of an lcm splitting set S of D is lcm splitting in E. According to a result of Beck
cited in [F, Lemma 4.5], the integral closure D′ of a Noetherian domain D is an
R2-stable extension of D. Consequently, if D is Noetherian, every principal prime
of D is a principal prime of D′. Using this we show, for example, that if S is a
saturated multiplicative set generated by nonzero principal primes of a Noetherian
domain D, and if (DS)′ is a UFD, then so is D′. This is yet another variation of
Nagata’s theorem.
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The proof of the main result and the statement of the consequences will become
easier if we bring in some auxiliary terminology. We shall call r, s ∈ D\{0}, v-
coprime if (r) ∩ (s) = (rs). The reason for this terminology will become apparent
after the next few lines. Let r, s ∈ D\{0}. Then (r)∩ (s) = (rs)(r, s)−1 is principal
⇔ ((r, s)−1)−1 = (r, s)v is principal and obviously, in this event, every generator of
(r, s)v is a GCD of r and s. Thus (r) ∩ (s) = (rs) ⇔ (r, s)v = D, and in this case
we say that r and s are v-coprime in D. Obviously r and s being v-coprime in D
does not mean that r and s are v-coprime in a ring extension E of D (for instance,
take 2, X in D = Z[X ] and E = Z[X/2]). Yet it is easy to see that D ⊆ E is an
R2-stable extension of domains if, and only if, the event of r, s being v-coprime in D
implies that r, s are v-coprime in E (that is if aE :E b = aE for each a, b ∈ D \ {0}
with aD :D b = aD). Therefore, D ⊆ E is an R2-stable extension of domains if and
only if every regular sequence of length two of D is a regular sequence of E. Using
a construction of [DHLRZ], we show that if a, b are two v-coprime elements of a
domain D such that aD + bD 6= D, there exists a domain extension E of D such
that a, b are v-coprime in E, but a, b are not v-coprime in E′. Let us recall from
[AAZ1] that a saturated multiplicative set S of D is called a splitting set if for all
d ∈ D\{0} we have d = st, where s ∈ S and t is v-coprime to S (i.e. is v-coprime
to every member of S). If S is a splitting set of D, then the set T = {t ∈ D; t is
v-coprime to S} is a splitting set called the m-complement of S. Let us also recall
from [AZ] that d ∈ D\{0} is an (lcm) extractor if for all x ∈ D, (d)∩(x) is principal,
and that divisors of products of extractors are again extractors. Therefore, an lcm
splitting set is a splitting set consisting of extractors. Moreover, by Corollary 2.5
of [AZ1], a saturated multiplicative set S, of D, generated by extractors is an lcm
splitting set if and only if every prime ideal that is disjoint with S contains an
element σ that is v-coprime to S.

Theorem 1. Let D ⊆ E be an R2-stable extension of domains, where E is an
overring of D. Let S ⊆ D be a saturated multiplicative set and S′ its saturation in
E. If S is splitting (resp. lcm splitting) in D, then so is S′ in E respectively.

The proof follows from the following technical lemma, which goes slightly farther
than the theorem.

Lemma 1. Let D,E, S, S′ be as above, assume that S is splitting in D, let T be
the m-complement of S in D and T ′ the saturation of T in E. Then the following
assertions hold:

(a) Every nonzero element x of E is expressible as x = (s/s′)(t/t′), where s, s′ ∈
S and t, t′ ∈ T , with s/s′ ∈ E and t/t′ ∈ E.

(b) S′ = {ws/s′; s, s′ ∈ S, s/s′ ∈ E,w ∈ U(E)} and T ′ = {wt/t′; t, t′ ∈ T, t/t′ ∈
E,w ∈ U(E)}.

(c) S′ is splitting in E with m-complement T ′.
(d) If S is lcm splitting in D, then S′ = SU(E).
(e) If S is lcm splitting in D, then so is S′ in E; hence ET is a GCD-domain.

Proof. (a) Let x ∈ E \ {0}. We can write x = st/s′t′ with s, s′ ∈ S and t, t′ ∈ T .
So t′ divides st in E, hence t′ divides t in E; that is, t/t′ ∈ E, because t′,s are
v-coprime not only in D but also in E, by R2-stableness. Similarly, s/s′ ∈ E.

(b), (c) follow from (a), because whenever s/s′, t/t′ ∈ E, with s, s′ ∈ S, t, t′ ∈ T ,
they are v-coprime in E.
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(d) follows from (b), because in this case every two elements in S have an LCM
belonging to S.

(e) follows from (d), [AAZ, Proposition 2.4] and the fact that every two elements
in S have an LCM in D (and E).

When S = D \ {0}, the last part of the previous lemma gives the following:

Corollary 1. Let D ⊆ E be an R2-stable extension of domains, where E is an
overring of D. If D is a GCD domain, then so is E.

Now to see that the above theorem does apply to some of the familiar types
of overrings of D, we need to recall some definitions. If D ⊆ E is an extension
of domains, E is called t-linked over D, if for all finitely generated nonzero ideals
I of D, I−1 = D implies that (IE)−1 = E [DHLZ] (see also [U], where the t-
linked extensions are called G2-stable extensions). Clearly every t-linked overring
of D is R2-stable over D, but what is interesting is that, according to [DHLZ,
Corollary 2.3], the complete integral closure D∗ of D is t-linked over D and so is,
among many others, the pseudo integral closure of D. Here, by the pseudo integral
closure of D we mean the ring D =

⋃
(Iv : Iv), where I ranges over nonzero finitely

generated ideals of D. It is easy to see that D′ ⊆ D ⊆ D∗. The ring D was called
pseudo integral closure in [AHZ], where it was studied somewhat systematically.
(The pseudo integral elements have been studied before under some less impressive
names such as regular integral elements [B, Ch. 7, Sect. 1, Exercise 30], and in not
as much detail.) For other t-linked overrings of D the reader may consult [DHLZ],
where it is also mentioned that if D is Noetherian, then the integral closure D′ of
D is a t-linked overring of D (see Proposition 2 for another case when D′ of D
is t-linked over D). To justify all the above definitions we bring in the following
statement.

Proposition 1. Let D be a domain, p ∈ D a prime element such that
⋂
n p

nD = 0
and E an R2-stable overring of D. Then p is a prime element or a unit of E.

Proof. Assume that p is a nonunit of E. By [AAZ1, Proposition 1.6], the set
S = {wpn; w ∈ U(D), n ≥ 0} is an lcm splitting set of D. By Lemma 1, its
saturation in E, S′ = {wpn; w ∈ U(E), n ≥ 0}, is also lcm splitting. So p is an
irreducible extractor in E, that is a prime element.

Corollary 2. If D is a domain and p ∈ D a prime element such that
⋂
n p

nD = 0,
then p is also prime in D and D∗. In particular, if D is a Noetherian domain, then
any nonzero principal prime of D extends to a principal prime of D′.

Proof. Let E be D and D∗. As DpD is a DVR, it contains E, hence p is a nonunit
of E. Apply Proposition 1 and the fact that E is t-linked over D.

Another case (that caused this investigation) when D′ is R2-stable over D, is
that of the almost GCD domains. Let us recall from [Z] that an integral domain
D is called an almost GCD (AGCD) domain if for each pair x, y ∈ D, there exists
a positive integer n = n(x, y) such that (xn) ∩ (yn) is principal. It was shown in
Lemma 3.5 and Theorem 3.1 of [Z] that if D is an AGCD domain, then D′ is R2-
stable over D and D ⊆ D′ is a root extension, that is for each x ∈ D′, xn ∈ D for
some n. Let us recall from [ADR] that an integral domain D is called root closed
(in its quotient field K) if whenever x ∈ K and xn ∈ D for some n, then x ∈ D.
Also, the root closure of a domain D is the smallest root closed overring of D. In
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particular, if D ⊆ E is a root extension (that is, every element of E has some power
in D), where E is a root closed overring of D, then E is the root closure of D. In
this case, we have

Proposition 2. Let D be a domain and E its root closure. If D ⊆ E is a root
extension, then it is R2-stable. In particular, D′ is R2-stable over D if D is an
AGCD domain.

Proof. If x, y ∈ D \ {0} are v-coprime in D and a ∈ E is a common multiple of
them in E, there exists n such that an ∈ D (because E is a root extension of D)
and an is a common multiple of xn, yn in D. Then xnyn divides an in D, hence xy
divides a in E, because (a/xy)n ∈ E and E is root closed.

It was also shown in [Z, Theorem 3.9], that D is an integrally closed AGCD
domain if and only if for each finitely generated nonzero ideal I there is a positive
integer n such that (In)v is principal. Thus an almost factorial domain of Storch
[S], which is nothing but a Krull domain with torsion divisor class group, is an
almost GCD domain.

Theorem 1 can lead to a number of Nagata type theorems, but here we shall be
concerned with only those that are expressible in most general terms. Yet before we
start even that, we need to recall a few facts. First let us note that over a coherent
domain every pseudo integral element is in fact integral. This follows from the
fact that if I is a nonzero finitely generated ideal of a coherent domain D, then
Iv = (I−1)−1 is finitely generated. Thus the integral closure of a coherent domain
is its pseudo integral closure and hence is t-linked over D.

Corollary 3 (Nagata type theorems). Let S be an lcm splitting multiplicative set
in a coherent domain D. If (DS)′ is a GCD domain, then so is D′. Consequently,
if D is Noetherian and S is a saturated multiplicative set generated by nonzero
principal primes of D and if (DS)′ is a UFD, then so is D′.

Proof. The proof depends upon the fact that in each case (DS)′ = D′S′ , where S′ is
the saturation of S in D′, and that in each case S′ is an lcm splitting multiplicative
set in D′. In the coherent case the result follows, say from [GP, Theorem 3.1] or
[AAZ, Theorem 4.3]. In the Noetherian case the actual theorem of Nagata can be
used, once we note that by Corollary 2, every nonzero principal prime of Noetherian
D extends to a principal prime of D′.

Nagata type theorems have a long history. For a glimpse of what was being done
in the beginning the reader may consult [GP] and [MS].

Corollary 4. Let S be an lcm splitting multiplicative set in a coherent domain D.
If (DS)′ is an AGCD domain, then so is D′. Consequently, if D is Noetherian,
S is a saturated multiplicative set of D generated by nonzero principal primes and
(DS)′ is an almost factorial domain, then so is D′.

Proof. We apply Theorems 4.1 and 4.3 of [AAZ]. Now the second part follows,
because D′ is a Krull domain.

We close this paper giving some examples.

Example 1. The extension of UFDs Z[X ] ⊆ Z[X/2] satisfies the conclusion of
Theorem 1 for every multiplicative set (cf. [CMZ, Corollary 1.2]), but, obviously,
Z[X/2] is not R2-stable over Z[X ]. Also, X is prime in Z[X ], but not a prime in
Z[X/2].
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The hypothesis
⋂
n p

nD = 0 is essential in Proposition 1, as the following exam-
ple shows.

Example 2. Let D = Z + XQ(i)[X ] and p = 2. Then, D′ = Z[i] + XQ(i)[X ] =
A[i], D/pD ' Z/2Z and D′/pD′ ' Z[i]/2Z[i]. So, p is prime in D, but not prime
in D′. Also, D′ is a Bezout domain (cf. [CMZ, Corollary 4.13]), so D′ is R2-stable
over D (cf. [DHLRZ, Theorem 2.4]). Moreover, D∗ = Q(i)[X ], so pD∗ = D∗.

In [DHLRZ], a domain E such that E′ is not R2-stable over E is constructed.
So, there exist two v-coprime elements a, b ∈ E which are not v-coprime in E′. To
introduce an ad-hoc terminology, let us say that the elements a, b are terminating
v-coprime (tv-coprime) in E, if a, b are v-coprime in E but they are not v-coprime
in E′. More precisely, in [DHLRZ, Example 4.1], it is shown that if D is a domain
of characteristic 6= 2 and Y1, Y2 are indeterminates, then Y1, Y2 are tv-coprime
in some domain extension of D[Y1, Y2]. Note that Y1, Y2 are v-coprime but not
comaximal in D[Y1, Y2] (we say that two elements a, b of a domain B are comaximal
if aB + bB = B). Using the construction of [DHLRZ, Example 4.1], we may give
the following generalization.

Proposition 3. Let D be a domain and a, b two v-coprime nonzero elements of D.
Then a, b are not comaximal in D if and only if a, b are tv-coprime in some domain
extension of D.

Proof. The ‘if’ part is obvious. For proving the converse, assume that aD+bD 6= D.
Now, we follow the pattern of [DHLRZ, Example 4.1], that is, we consider the
subring E = D + XI of D[X ], where I = aD[X ] + (1 − bX)D[X ] (note that in
[DHLRZ], the ring E = D + X(a, 2 − bX)D[X ] was used). We notice that E has
the following pullback description. Let us consider the direct product ring G =
D× (D/aD)[1/b̄], where b̄ is the class of b modulo aD. Since b̄ is a nonzerodivisor
in D/aD, D/aD ⊆ D/aD[1/b̄] and this inclusion is proper because a, b are not
comaximal. From D[X ] to G, we consider the epimorphism q with kernel XI,
given by q(f(X)) = (f(0), f(1/b̄)). This epimorphism is obtained by applying the
Chinese Remainder Theorem for the comaximal ideals XD[X ] and I of D[X ]. Let
us consider D as a subring of G via the monomorphism r obtained restricting q
to D. Now, E is the pullback of the diagram composed of D[X ], q, G,D, that
is, E = q−1(D). In particular, D[X ] is an overring of E. For showing that a, b
are tv-coprime in E, we follow the plan of [DHLRZ, Example 4.1], making the
computations in the pullback. So, we claim that: 1) a, b are v-coprime in E, 2)
aX, bX ∈ E′ and 3) X 6∈ E′. To prove 1), let f ∈ (aE + bE)−1. Since D[X ] is
R2-stable (flat) over D, f ∈ D[X ]. Changing f to f − f(0), we may assume that
f(0) = 0. Since bf ∈ E, q(bf) = (0, b̄f(1/b̄)) ∈ D (via r!), that is b̄f(1/b̄) = 0, so
f(1/b̄) = 0, hence f ∈ E. To prepare for 2), we notice that an element h ∈ D[X ]
is integral over E if and only if q(h) is integral over D. So, for 2), it suffices to see
that q(aX) = (0, 0) and q(bX) = (0, 1) are integral over D, which is clear. For 3),
we note that q(X) = (0, 1/b̄) is not integral over D, so X 6∈ E′.

Consequently, if D0 = Z[Y ] + X(2, 1 − XY )Z[X,Y ], then D′0 is not R2-stable
over D0. We shall use this ring for our next example.

Example 3. Let D0 be as above and W an indeterminate. We set E = D0[W ],
p = 2 + YW and S = {pn; n ≥ 0}. As shown in the proof of Proposition 3, p is
prime in E and p is not prime in E′. Also,

⋂
n p

nE = 0. So, S is an lcm splitting
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set in E (cf. [AAZ1, Proposition 1.6]), but not lcm splitting in E′. Indeed, p
is irreducible in E′, because U(E′) ⊆ U(Z[X,Y,W ]) = {1,−1}, so p is not an
extractor in E′.
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