Convolution operators and zeros of entire functions
Author:
David A. Cardon
Journal:
Proc. Amer. Math. Soc. 130 (2002), 1725-1734
MSC (2000):
Primary 44A35, 30C15
DOI:
https://doi.org/10.1090/S0002-9939-01-06351-1
Published electronically:
October 17, 2001
MathSciNet review:
1887020
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a real entire function of order less than
with only real zeros. Then we classify certain distribution functions
such that the convolution
has only real zeros.
- 1. Lars V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable; International Series in Pure and Applied Mathematics. MR 510197
- 2. Daniel Bump, Kwok-Kwong Choi, Pär Kurlberg, and Jeffrey Vaaler, A local Riemann hypothesis. I, Math. Z. 233 (2000), no. 1, 1–19. MR 1738342, https://doi.org/10.1007/PL00004786
- 3. N.B. de Bruijn, The Roots of Trigonometric Integrals, Duke Math. J. 17 (1950), 197-226. MR 12:250a
- 4. Thomas Craven and George Csordas, Differential operators of infinite order and the distribution of zeros of entire functions, J. Math. Anal. Appl. 186 (1994), no. 3, 799–820. MR 1293856, https://doi.org/10.1006/jmaa.1994.1334
- 5. George Csordas and Richard S. Varga, Integral transforms and the Laguerre-Pólya class, Complex Variables Theory Appl. 12 (1989), no. 1-4, 211–230. MR 1040921, https://doi.org/10.1080/17476938908814366
- 6. G. Csordas and R. S. Varga, Fourier transforms and the Hermite-Biehler theorem, Proc. Amer. Math. Soc. 107 (1989), no. 3, 645–652. MR 982401, https://doi.org/10.1090/S0002-9939-1989-0982401-1
- 7. George Csordas, Wayne Smith, and Richard S. Varga, Level sets of real entire functions and the Laguerre inequalities, Analysis 12 (1992), no. 3-4, 377–402. MR 1182637, https://doi.org/10.1524/anly.1992.12.34.377
- 8. George Csordas, Richard S. Varga, and István Vincze, Jensen polynomials with applications to the Riemann 𝜁-function, J. Math. Anal. Appl. 153 (1990), no. 1, 112–135. MR 1080122, https://doi.org/10.1016/0022-247X(90)90269-L
- 9. M.L. Eaton, A probability inequality for linear combinations of bounded random variables, Ann. Stat. 2 (1974), 609-614.
- 10. Martin Eisen, Introduction to mathematical probability theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0258078
- 11. Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, Francesco G. Tricomi, Higher transcendental functions, Vol. II. Based, in part, on notes left by Harry Bateman, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. MR 15:419i
- 12. Bert Fristedt and Lawrence Gray, A modern approach to probability theory, Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1422917
- 13. Dennis A. Hejhal, On a result of G. Pólya concerning the Riemann 𝜉-function, J. Analyse Math. 55 (1990), 59–95. MR 1094712, https://doi.org/10.1007/BF02789198
- 14. B. Ja. Levin, Distribution of zeros of entire functions, American Mathematical Society, Providence, R.I., 1964. MR 0156975
- 15. Michel Loève, Probability theory, Third edition, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR 0203748
- 16. Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- 17. Iosif Pinelis, Extremal probabilistic problems and Hotelling’s 𝑇² test under a symmetry condition, Ann. Statist. 22 (1994), no. 1, 357–368. MR 1272088, https://doi.org/10.1214/aos/1176325373
- 18.
George Pólya, Bemerkung über die Integraldarstellung der Riemannsche
-Funktion, Acta Math. 48 (1926), 305-317.
- 19. George Pólya, Über trigonometrische Integrale mit nur reellen Nullstellen, J. Reine Angew. Math. 158 (1927), 6-18.
- 20. G. Pólya and J. Schur, Über zwei Arten von Faktorfolgen in der Theorie der algebraischen Gleichungen, J. Reine Angew. Math. 144 (1914), 89-113.
- 21. Gabor Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. XXIII, 1939. MR 1:14b
- 22. E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 44A35, 30C15
Retrieve articles in all journals with MSC (2000): 44A35, 30C15
Additional Information
David A. Cardon
Affiliation:
Department of Mathematics, Brigham Young University, Provo, Utah 84602
Email:
cardon@math.byu.edu
DOI:
https://doi.org/10.1090/S0002-9939-01-06351-1
Keywords:
Convolution,
zeros of entire functions,
Laguerre-P\'olya class
Received by editor(s):
December 5, 2000
Published electronically:
October 17, 2001
Communicated by:
Dennis A. Hejhal
Article copyright:
© Copyright 2001
American Mathematical Society