On the dual of Orlicz–Lorentz space
HTML articles powered by AMS MathViewer
- by H. Hudzik, A. Kamińska and M. Mastyło
- Proc. Amer. Math. Soc. 130 (2002), 1645-1654
- DOI: https://doi.org/10.1090/S0002-9939-02-05997-X
- Published electronically: January 25, 2002
- PDF | Request permission
Abstract:
A description of the Köthe dual of the Orlicz–Lorentz space $\Lambda _{\varphi , w}$ generated by an Orlicz function $\varphi$ and a regular weight function $w$ is presented. It is also shown that in the case of separable Orlicz–Lorentz spaces the regularity condition on $w$ is necessary and sufficient for the coincidence of the Banach dual space with the described Köthe dual space.References
- G. D. Allen, Duals of Lorentz spaces, Pacific J. Math. 77 (1978), no. 2, 287–291. MR 510924, DOI 10.2140/pjm.1978.77.287
- G. D. Allen and L. C. Shen, On the structure of principal ideals of operators, Trans. Amer. Math. Soc. 238 (1978), 253–270. MR 467371, DOI 10.1090/S0002-9947-1978-0467371-4
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190
- Henryk Hudzik, Anna Kamińska, and Mieczysław Mastyło, Geometric properties of some Calderón-Lozanovskiĭ spaces and Orlicz-Lorentz spaces, Houston J. Math. 22 (1996), no. 3, 639–663. MR 1417636
- Nigel J. Kalton, Nonlinear commutators in interpolation theory, Mem. Amer. Math. Soc. 73 (1988), no. 385, iv+85. MR 938889, DOI 10.1090/memo/0385
- Anna Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29–38. MR 1127306, DOI 10.1002/mana.19901470104
- Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI 10.1002/sapm1939181153
- S. G. Kreĭn, Yu. Ī. Petunīn, and E. M. Semënov, Interpolation of linear operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.I., 1982. Translated from the Russian by J. Szűcs. MR 649411
- G. Ja. Lozanovskiĭ, Certain Banach lattices. III, IV, Sibirsk. Mat. Ž. 13 (1972), 1304–1313, 1420; ibid. 14 (1973), 140–155, 237 (Russian). MR 0336314
- G. Ya. Lozanovskiĭ, Transformations of ideal Banach spaces by means of concave functions, Qualitative and approximate methods for the investigation of operator equations, No. 3 (Russian), Yaroslav. Gos. Univ., Yaroslavl′1978, pp. 122–148 (Russian). MR 559326
- Shlomo Reisner, On the duals of Lorentz function and sequence spaces, Indiana Univ. Math. J. 31 (1982), no. 1, 65–72. MR 642617, DOI 10.1512/iumj.1982.31.31008
- Shlomo Reisner, On two theorems of Lozanovskiĭ concerning intermediate Banach lattices, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 67–83. MR 950976, DOI 10.1007/BFb0081736
Bibliographic Information
- H. Hudzik
- Affiliation: Faculty of Mathematics and Computer Science, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland and Institute of Mathematics, Poznań University of Technology, Piotrowo 3a, 60-965 Poznań, Poland
- Email: hudzik@amu.edu.pl
- A. Kamińska
- Affiliation: Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
- Email: kaminska@memphis.edu
- M. Mastyło
- Affiliation: Faculty of Mathematics and Computer Science, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
- MR Author ID: 121145
- Email: mastylo@amu.edu.pl
- Received by editor(s): September 24, 1999
- Received by editor(s) in revised form: April 20, 2000
- Published electronically: January 25, 2002
- Additional Notes: The research of the second and third authors was supported by NATO Collaborative Grant CRG 972918
- Communicated by: Dale Alspach
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1645-1654
- MSC (1991): Primary 46B10, 46E30
- DOI: https://doi.org/10.1090/S0002-9939-02-05997-X
- MathSciNet review: 1887011