A remark on Calderón-Zygmund classes and Sobolev spaces
Author:
David Swanson
Journal:
Proc. Amer. Math. Soc. 130 (2002), 1655-1659
MSC (2000):
Primary 46E35
DOI:
https://doi.org/10.1090/S0002-9939-02-06458-4
Published electronically:
January 28, 2002
MathSciNet review:
1887038
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show how the Sobolev space may be characterized in terms of the local behavior of its members. We use the local
-classes introduced by Calderón and Zygmund.
- [AH] David R. Adams and Lars Inge Hedberg, Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR 1411441
- [BZ] Thomas Bagby and William P. Ziemer, Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974), 129–148. MR 344390, https://doi.org/10.1090/S0002-9947-1974-0344390-6
- [BH] Bogdan Bojarski and Piotr Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106 (1993), no. 1, 77–92. MR 1226425
- [C] A. P. Calderón, Uniqueness of distributions, Rev. Un. Mat. Argentina 25 (1970/71), 37–65. MR 343018
- [CZ] A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225. MR 136849, https://doi.org/10.4064/sm-20-2-181-225
- [H] Piotr Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), no. 4, 403–415. MR 1401074, https://doi.org/10.1007/BF00275475
- [S] Robert S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031–1060. MR 0215084
- [Z] William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E35
Retrieve articles in all journals with MSC (2000): 46E35
Additional Information
David Swanson
Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843
Email:
dswanson@math.tamu.edu
DOI:
https://doi.org/10.1090/S0002-9939-02-06458-4
Keywords:
Sobolev spaces,
Calder\'{o}n-Zygmund classes
Received by editor(s):
October 2, 2000
Published electronically:
January 28, 2002
Communicated by:
David Preiss
Article copyright:
© Copyright 2002
American Mathematical Society