A remark on Calderón-Zygmund classes and Sobolev spaces
HTML articles powered by AMS MathViewer
- by David Swanson
- Proc. Amer. Math. Soc. 130 (2002), 1655-1659
- DOI: https://doi.org/10.1090/S0002-9939-02-06458-4
- Published electronically: January 28, 2002
- PDF | Request permission
Abstract:
We show how the Sobolev space $W^{k,p}(\mathbf {R}^n)$ may be characterized in terms of the local behavior of its members. We use the local $T^{k,p}$-classes introduced by Calderón and Zygmund.References
- David R. Adams and Lars Inge Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR 1411441, DOI 10.1007/978-3-662-03282-4
- Thomas Bagby and William P. Ziemer, Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974), 129–148. MR 344390, DOI 10.1090/S0002-9947-1974-0344390-6
- Bogdan Bojarski and Piotr Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106 (1993), no. 1, 77–92. MR 1226425
- A. P. Calderón, Uniqueness of distributions, Rev. Un. Mat. Argentina 25 (1970/71), 37–65. MR 343018
- A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225. MR 136849, DOI 10.4064/sm-20-2-181-225
- Piotr Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), no. 4, 403–415. MR 1401074, DOI 10.1007/BF00275475
- Robert S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031–1060. MR 0215084
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- David Swanson
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: dswanson@math.tamu.edu
- Received by editor(s): October 2, 2000
- Published electronically: January 28, 2002
- Communicated by: David Preiss
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1655-1659
- MSC (2000): Primary 46E35
- DOI: https://doi.org/10.1090/S0002-9939-02-06458-4
- MathSciNet review: 1887038