Linearity of dimension functions for semilinear -spheres
Author:
Ikumitsu Nagasaki
Journal:
Proc. Amer. Math. Soc. 130 (2002), 1843-1850
MSC (2000):
Primary 57S25; Secondary 57S15, 57S17
DOI:
https://doi.org/10.1090/S0002-9939-02-06512-7
Published electronically:
January 25, 2002
MathSciNet review:
1887033
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we show that the dimension function of every semilinear -sphere is equal to that of a linear
-sphere for finite nilpotent groups
of order
, where
,
are primes. We also show that there exists a semilinear
-sphere whose dimension function is not virtually linear for an arbitrary nonsolvable compact Lie group
.
- 1. Stefan Bauer, Dimension functions of homotopy representations for compact Lie groups, Math. Ann. 280 (1988), no. 2, 247–265. MR 929537, https://doi.org/10.1007/BF01456053
- 2. Stefan Bauer, A linearity theorem for group actions on spheres with applications to homotopy representations, Comment. Math. Helv. 64 (1989), no. 1, 167–172. MR 982565, https://doi.org/10.1007/BF02564667
- 3. Tammo tom Dieck, Homotopy-equivalent group representations, J. Reine Angew. Math. 298 (1978), 182–195. MR 501032, https://doi.org/10.1515/crll.1978.298.182
- 4. Tammo tom Dieck, Homotopiedarstellungen endlicher Gruppen: Dimensionsfunktionen, Invent. Math. 67 (1982), no. 2, 231–252 (German). MR 665155, https://doi.org/10.1007/BF01393816
- 5. Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR 889050
- 6. Tammo tom Dieck and Ted Petrie, Homotopy representations of finite groups, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 129–169 (1983). MR 686044
- 7. Ronald M. Dotzel and Gary C. Hamrick, 𝑝-group actions on homology spheres, Invent. Math. 62 (1981), no. 3, 437–442. MR 604837, https://doi.org/10.1007/BF01394253
- 8. Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- 9. Katsuo Kawakubo, Equivariant homotopy equivalence of group representations, J. Math. Soc. Japan 32 (1980), no. 1, 105–118. MR 554519, https://doi.org/10.2969/jmsj/03210105
- 10. Erkki Laitinen, Unstable homotopy theory of homotopy representations, Transformation groups, Poznań 1985, Lecture Notes in Math., vol. 1217, Springer, Berlin, 1986, pp. 210–248. MR 874180, https://doi.org/10.1007/BFb0072825
- 11. E. Laitinen and M. Raußen, Homotopy types of locally linear representation forms, Manuscripta Math. 88 (1995), no. 1, 33–52. MR 1348788, https://doi.org/10.1007/BF02567803
- 12. Chung Nim Lee and Arthur G. Wasserman, On the groups 𝐽𝑂(𝐺), Mem. Amer. Math. Soc. 2 (1975), no. issue 1, 159, ii+62. MR 0370581, https://doi.org/10.1090/memo/0159
- 13. Christof Mackrodt, Representation forms for metacyclic groups, Manuscripta Math. 73 (1991), no. 3, 261–287. MR 1132140, https://doi.org/10.1007/BF02567641
- 14. Ib Madsen and Martin Raussen, Locally linear representation forms, Osaka J. Math. 27 (1990), no. 3, 567–591. MR 1075166
- 15. Deane Montgomery and C. T. Yang, Differentiable pseudo-free circle actions on homotopy seven spheres, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Springer, Berlin, 1972, pp. 41–101. Lecture Notes in Math., Vol. 298. MR 0362383
- 16. Ikumitsu Nagasaki, Homotopy representations and spheres of representations, Osaka J. Math. 22 (1985), no. 4, 895–905. MR 815457
- 17. Ikumitsu Nagasaki, Linearity of homotopy representations. II, Manuscripta Math. 82 (1994), no. 3-4, 277–292. MR 1265001, https://doi.org/10.1007/BF02567702
- 18. Ikumitsu Nagasaki, Unstable 𝑗𝑂-groups and stably linear homotopy representations for 𝑝-groups, Osaka J. Math. 36 (1999), no. 1, 1–16. MR 1670726
- 19. Robert Oliver, Smooth compact Lie group actions on disks, Math. Z. 149 (1976), no. 1, 79–96. MR 423390, https://doi.org/10.1007/BF01301634
- 20. Paweł Traczyk, On the 𝐺-homotopy equivalence of spheres of representations, Math. Z. 161 (1978), no. 3, 257–261. MR 494094, https://doi.org/10.1007/BF01214507
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57S25, 57S15, 57S17
Retrieve articles in all journals with MSC (2000): 57S25, 57S15, 57S17
Additional Information
Ikumitsu Nagasaki
Affiliation:
Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
Email:
nagasaki@math.sci.osaka-u.ac.jp
DOI:
https://doi.org/10.1090/S0002-9939-02-06512-7
Keywords:
Dimension function,
semilinear $G$-sphere,
homotopy representation
Received by editor(s):
March 20, 2000
Published electronically:
January 25, 2002
Additional Notes:
This work was partially supported by Grant-in-Aid for Scientific Research
Dedicated:
Dedicated to the memory of Professor Katsuo Kawakubo
Communicated by:
Ralph Cohen
Article copyright:
© Copyright 2002
American Mathematical Society