On representable linearly compact modules
HTML articles powered by AMS MathViewer
- by Nguyen Tu Cuong and Le Thanh Nhan
- Proc. Amer. Math. Soc. 130 (2002), 1927-1936
- DOI: https://doi.org/10.1090/S0002-9939-01-06298-0
- Published electronically: December 31, 2001
- PDF | Request permission
Abstract:
For a flat $R-$module $F,$ we prove that $\operatorname {Hom}_{R}(F,-)$ is a functor from the category of linearly compact $R-$modules to itself and is exact. Moreover, $\operatorname {Hom}_{R}(F,M)$ is representable when $M$ is linearly compact and representable. This gives an affirmative answer to a question of L. Melkersson (1995) for linearly compact modules without the condition of finite Goldie dimension. The set of attached prime ideals of the co-localization $\operatorname {Hom}_{R}(R_{S},M)$ of a linearly compact representable $R-$module $M$ with respect to a multiplicative set $S$ in $R$ is described.References
- N. Bourbaki, Éléments de mathématique. Fascicule XXVIII. Algèbre commutative. Chapitre 3: Graduations, filtrations et topologies. Chapitre 4: Idéaux premiers associés et décomposition primaire, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1293, Hermann, Paris, 1961 (French). MR 0171800
- N. T. Cuong and T. T. Nam, A local homology theory for linearly compact modules, Preprint.
- C. U. Jensen, Les foncteurs dérivés de $\underleftarrow {\mmlToken {mi}{lim}}$ et leurs applications en théorie des modules, Lecture Notes in Mathematics, Vol. 254, Springer-Verlag, Berlin-New York, 1972. MR 0407091
- Daniel Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81–128 (French). MR 254100
- J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334–338. MR 4
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- I. G. Macdonald, Duality over complete local rings, Topology 1 (1962), 213–235. MR 151491, DOI 10.1016/0040-9383(62)90104-0
- I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971 & Convegno di Geometria, INDAM, Rome, 1972) Academic Press, London, 1973, pp. 23–43. MR 0342506
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Leif Melkersson, Cohomological properties of modules with secondary representations, Math. Scand. 77 (1995), no. 2, 197–208. MR 1379266, DOI 10.7146/math.scand.a-12561
- Leif Melkersson and Peter Schenzel, The co-localization of an Artinian module, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 1, 121–131. MR 1317331, DOI 10.1017/S0013091500006258
- Rodney Y. Sharp, Secondary representations for injective modules over commutative Noetherian rings, Proc. Edinburgh Math. Soc. (2) 20 (1976), no. 2, 143–151. MR 414538, DOI 10.1017/S0013091500010658
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
Bibliographic Information
- Nguyen Tu Cuong
- Affiliation: Institute of Mathematics, P.O. Box 631, Boho, 10.000 Hanoi, Vietnam
- Email: Cuongnt@hn.vnn.vn
- Le Thanh Nhan
- Affiliation: Institute of Mathematics, P.O. Box 631, Boho, 10.000 Hanoi, Vietnam
- Received by editor(s): September 20, 2000
- Received by editor(s) in revised form: February 1, 2001
- Published electronically: December 31, 2001
- Additional Notes: This work was supported in part by the National Basis Research Program in Natural Science of Vietnam
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1927-1936
- MSC (1991): Primary 13C05; Secondary 13J99
- DOI: https://doi.org/10.1090/S0002-9939-01-06298-0
- MathSciNet review: 1896024