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Abstract. A Weyl-Heisenberg frame for L2(R) is a frame consisting of mod-
ulates Embg(t) = e2πimbtg(t) and translates Tnag(t) = g(t − na), m,n ∈ Z,
of a fixed function g ∈ L2(R), for a, b ∈ R. A fundamental question is to
explicitly represent the families (g, a, b) so that (EmbTnag)m,n∈Z is a frame

for L2(R). We will show an interesting connection between this question
and a classical problem of Littlewood in complex function theory. In par-
ticular, we show that classifying the characteristic functions χE for which
(EmTnχE)m,n∈Z is a frame for L2(R) is equivalent to classifying the integer

sets {n1 < n2 < · · · < nk} so that f(z) =
∑k
j=1 z

ni does not have any zeroes

on the unit circle in the plane.

1. Introduction

A family of vectors (fi) in a Hilbert space H is called a frame for H if there are
constants A,B > 0 so that

A‖f‖2 ≤
∑
i

|〈f, fi〉|2 ≤ B‖f‖2, for all f ∈ H.(1.1)

We call A (resp. B) a lower (resp. upper) frame bound of the frame. The
largest A and the smallest B which work in (1.1) above are called the optimal
frame bounds. If P is an orthogonal projection on H , and (fi) is a frame for H
with frame bounds A,B, then for all f ∈ PH we have

A‖f‖2 ≤
∑
i

|〈f, fi〉|2 =
∑
i

〈f, Pfi〉|2 ≤ B‖f‖2.(1.2)

It follows that (Pfi) is a frame for PH with the same frame bounds A,B.
An important class of frames used in signal/image processing, data compression

etc. are the Weyl-Heisenberg frames. For f ∈ L2(R) and a, b real numbers we
define translation by a (resp. modulation by b) by Taf(t) = f(t − a) (resp.
Ebf(t) = e2πibtf(t)). For a fixed g ∈ L2(R), we say that (g, a, b) generates a Weyl-
Heisenberg frame (WH-frame for short) if (EmbTnag)m,n∈Z forms a frame for
L2(R). A fundamental question in this area is to explicitly represent those families
(g, a, b) which generate Weyl-Heisenberg frames for L2(R). Much work has been
done on this question by Ron and Shen [13, 14], Janssen [10], Casazza, Christensen
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and Janssen [3], Casazza and Lammers [4], and a host of other authors. The
papers [4, 10] concentrate on the question of finding the characteristic functions
χE so that (χE , a, b) generates a Weyl-Heisenberg frame. Janssen [10] has made
quite a detailed study of this question, and one consequence of his work is that even
this very special case of the general problem is quite a deep question. It is known
[7] that (g, 1, 1) generates a WH-frame if and only if (EmTng) is a Riesz basis for
L2(R). In this paper we will show that the question of classifying the characteristic
functions χE so that (χE , 1, 1) generates a Weyl-Heisenberg frame is equivalent to
a classical problem of Littlewood in complex function theory. This shows that this
question in WH-frame theory is even more difficult than previously thought, as
well as giving important connections between frame theory and complex function
theory.

Now we will pass to Littlewood’s problem. In 1968 Littlewood [11] studied the
class of functions An which consists of polynomials of the form

∑n
i=1 aiz

i, with
ai ∈ {0, 1}. On page 25 of [11] he writes: “These raise some fascinating questions.”
One of the main questions raised by Littlewood is:

Problem 1.1 (Littlewood). Classify the integer sets {n1 < n2 < · · · < nk} so that
f(z) =

∑k
j=1 z

ni does not have any zeroes on the unit circle in the plane.

There is a huge literature on the zeroes of polynomials in An as well as various
other related classes (e.g. where the coefficients come from the set {−1, 0, 1}).
For an up to date view of this subject, we refer the reader to [1, 2, 12] and their
references.

2. Main results

We need the Zak transform (called the kq-representation by Zak and also called
the Weil-Brezin map in the literature) but brought to the level of an “art form”
by Janssen (see [5, 8, 9]). We define the Zak transform to be the unitary mapping
Z(·) from L2(R) onto L2([0, 1]2) that takes the orthonormal basis {EmTnχ[0,1])m,n∈Z
to the orthonormal basis {e2πi(nx+my)}n,n∈Z. This is not the usual definition of the
Zak transform, but is an equivalent formulation [7]. It is known (see [7, 8, 9]) that

Zg(x, y) =
∑
n∈Z

g(x+ n)e2πiny , for all x, y ∈ [0, 1],(2.1)

and

Z(EmTng)(x, y) = e2πi(nx+my)Zg(x, y).(2.2)

Now we have the following (somewhat well-known) result.

Proposition 2.1. Let E be a measurable subset of [0, 1], F =
⋃
n∈Z(E + n) and

g ∈ L2(F ). The following are equivalent:
(1) (EmTng)m,n∈Z is a frame for L2(F ) with optimal frame bounds A,B.
(2) We have

0 < A = ess inf
(x,y)∈E×[0,1]

|Zg(x, y)|2

≤ ess sup
(x,y)∈E×[0,1]

|Zg(x, y)|2 = B <∞.
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Proof. Since Z(·) is a unitary operator, the frame bounds for (EmTng) are the
same as the frame bounds for (e2πi(nx+my)Zg(x, y)). Also, by equation (2.1) and
the definition of E,F , we have

Zg(x, y) = 0, for all x /∈ E.(2.3)

Since (e2πi(nx+my))m,n∈Z is an orthonormal basis for L2([0, 1]2), we have for any
F (x, y) ∈ L2([0, 1]2), ∑

m,n∈Z
|〈F (x, y), e2πi(nx+my)Zg(x, y)〉|2

= ‖F (x, y)Zg(x, y)‖2L2(E×[0,1]).

(2.4)

It follows that the upper (resp. lower) frame bound for (e2πi(nx+my)Zg(x, y)) is
the square of the norm of the multiplication operator (resp. the inverse of the
multiplication operator) F → F · Zg on L2(E × [0, 1]). A direct calculation shows
that these norms are precisely the bounds given in (2) of the proposition.

We now have

Proposition 2.2. Let Ei ⊂ [0, 1], Fi =
⋃
n∈Z(Ei + n), F =

⋃
i Fi, and assume

Fi ∩ Fj = ∅, for all i 6= j. Let gi be a function supported on Fi and assume that
g =

∑
i gi ∈ L2(R). The following are equivalent:

(1) (EmTng)m,n∈Z is a frame for L2(F ) with optimal frame bounds A,B.
(2) For each i, (EmTngi)m,n∈Z is a frame for L2(Fi) with optimal frame bounds

Ai, Bi, and 0 < A = inf Ai ≤ supBi = B <∞.

Proof. (1)⇒ (2): Let Pi be the orthogonal projection of L2(F ) onto L2(Fi) given
by Pif = f |Fi . Now, Pig = gi, and, as we observed in the introduction, (gi, 1, 1)
generates a WH-frame for L2(Fi) with frame bounds A,B. Hence, A ≤ Ai ≤ Bi ≤
B.

(2)⇒ (1): By Proposition 2.1 and our assumptions in (2), for each i we have

A ≤ Ai ≤ ess inf
(x,y)∈Fi×[0,1]

|Zgi(x, y)|2

≤ ess sup
(x,y)∈Fi×[0,1]

|Zgi(x, y)|2 ≤ Bi ≤ B.

Now, Zg =
∑
i Zgi and by our assumption that Fi ∩ Fj = ∅, for all i 6= j, we have

support Zgi ∩ support Zgj = ∅, for all i 6= j.

It follows that

ess sup
(x,y)∈F×[0,1]

|Zg(x, y)|2 = sup
i

ess sup
(x,y)∈Fi×[0,1]

|Zgi(x, y)|2 = sup
i
Bi = B.

Similarly,

A = inf
i
Ai = ess inf

(x,y)∈F×[0,1]
|Zg(x, y)|2.

It follows that (g, 1, 1) generates a WH-frame for L2(F ) with frame bounds A,B
by Proposition 2.1

Now we have a constructive characterization of certain Weyl-Heisenberg frame
sets for a = b = 1. To simplify the notation, we call a measurable subset F ⊂ R a
Weyl-Heisenberg frame set for (a, b) if (χF , a, b) generates a Weyl-Heisenberg
frame for L2(R).
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Theorem 2.3. Fix integers n1 < n2 < · · · < nk. The following are equivalent:
(1) The set F =

⋃k
j=1([0, 1) + nj) is a Weyl-Heisenberg frame set for (1, 1) with

frame bounds A,B.
(2) We have A ≤ |

∑k
j=1 z

nj |2 ≤ B, for all |z| = 1.
(3) For every measurable set E ⊂ [0, 1] of positive measure, and for the set

F0 =
⋃k
j=1(E + nj), (EmTnχF0)m,n∈Z is a frame for L2(F0) with frame bounds

A,B.

Proof. In Proposition 2.1, if g = χF , then

Zg(x, y) = χ[0,1](x)
k∑
j=1

e2πinjy =
k∑
j=1

e2πinjy, for all x, y ∈ [0, 1].

Hence,

A ≤ ess inf
(x,y)∈[0,1]2

|Zg(x, y)|2 ≤ ess sup
(x,y)∈[0,1]2

|Zg(x, y)|2 ≤ B,

if and only if for all |z| = 1,

A ≤ |
k∑
j=1

znj |2 ≤ B.

This proves the equivalence of (1) and (2), which is clearly implied by (3).
We now show that (1) implies (3). By (1), (χF , 1, 1) generates a WH-frame for

L2(F ) with frame bounds A,B. Let P be the orthogonal projection of L2(F ) onto
L2(F0) given by Pf = f |F0 . Then PχF = χF0 , and, as we have observed in the
introduction, it follows that (χF0 , 1, 1) generates a WH-frame for L2(F0) with frame
bounds A,B.

We call a measurable set F ⊂ R an elementary A-Weyl-Heisenberg frame
set of length k if F =

⋃k
j=1(E + nj) for some (nj) and some measurable subset

E in [0, 1) of positive measure and we have

A ≤ inf
|z|=1

|
k∑
j=1

znj |2.

We end with our classification of all WH-frame sets for a = b = 1. We first note
that for F ⊂ R, functions in the span of (EmTng)m,n∈Z have their support in⋃
n∈Z(F + n). Hence, a necessary condition for F to be a WH-frame set for (1,1)

is that |R−
⋃
n(F + n)| = 0.

Theorem 2.4. Let F be a subset of R for which |R−
⋃
n∈Z(F + n)| = 0 a.e. The

following are equivalent:
(1) The set F is a Weyl-Heisenberg frame set for (1,1).
(2) There are constants k,A > 0 so that F =

⋃
i∈I Fi (I is finite or infinite),

where each Fi is an elementary A-Weyl-Heisenberg frame set of length ≤ k and
(Fi + n) ∩ (Fj +m) = ∅ for all i 6= j and all m,n ∈ Z.

Proof. (1)⇒ (2): Let F be a WH-frame set. For each j ∈ N let Fj = {x ∈ [0, 1) :
#(x+N)∩F# = j}, where # denotes cardinality. A consequence of the WH-frame
identity (see [7], Theorem 4.1.2, p. 648) is that

∑
n |χF (x + n)|2 ≤ B a.e. Hence,
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there is a k ∈ N so that |Fj | = 0, for all j > k. Now for j ≤ k and any finite set
of integers ζ = {n1 < n2 < · · · < nj} let Fj,ζ = {x ∈ Fj : x + n` ∈ F, 1 ≤ ` ≤ j}.
The distinct non-empty (Fj,ζ) form a countable family of sets which are pairwise
disjoint under translation by n ∈ Z and which by Proposition 2.2 satisfies (2).

(2)⇒ (1): Fix i and consider (χFi , 1, 1). Since Fi is an elementary A-WH-frame
set of length k, there are a m ≤ k and a set Ei ⊂ [0, 1] with Fi =

⋃m
j=1(Ei + nj)

for some n1 < n2 < · · · < nm so that for all |z| = 1 we have

A ≤ |
m⋃
j=1

znj |2 ≤ m ≤ k.

By Theorem 2.3, (χFi , 1, 1) generates a WH-frame with frame bounds A, k. Since
the (Fi) are disjoint, we have χF =

∑
i χFi . Also, (Fi + n) ∩ (Fj +m) = ∅, for all

i 6= j, m, n ∈ Z, implies that Ei ∩ Ej = ∅ for all i 6= j. Hence,

|F | =
∑
i

|Fi| ≤ k
∑
i

|Ei| ≤ k,

and it follows that χF ∈ L2(R). Now, by Proposition 2.2, (χF , 1, 1) is a frame for
L2(F ) with frame bounds A, k.
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