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ASYMPTOTIC BEHAVIOR OF ROOTS
OF RANDOM POLYNOMIAL EQUATIONS

EFRAIM SHMERLING AND KENNETH J. HOCHBERG

(Communicated by Claudia M. Neuhauser)

Abstract. We derive several new results on the asymptotic behavior of the
roots of random polynomial equations, including conditions under which the
distributions of the zeros of certain random polynomials tend to the uniform
distribution on the circumference of a circle centered at the origin. We also
derive a probabilistic analog of the Cauchy-Hadamand theorem that enables
us to obtain the radius of convergence of a random power series.

§1. Introduction and statement of main results

Convergence and limit theorems are of fundamental importance in the theory
of random polynomials, and they have been the subject of active research for the
past forty years. Most of the early results in this field are summarized in the
monograph by Bharucha-Reid and Sambandham [5, pp. 173-195]. The survey paper
by Edelman and Kostlan [7] contains more recent developments in this area, and
applications of these ideas to problems in quantum chaotic dynamics are discussed
in the paper by Bogomolny et al [6].

In this article, we prove some theorems on the asymptotic behavior of the roots of
random polynomial equations whose order tends to infinity. We also derive formulas
which enable us to find the radius of convergence of a random power series.

We consider a sequence of random polynomials
{
Fn(z, ω) =

n∑
k=0

ak(ω)zk
}∞
n=1

whose coefficients form a sequence of independent real- or complex-valued random
variables. Clearly, the complex-valued coefficients ak(ω) are of the form

ak(ω) = αk(ω) + iβk(ω)

with means µk and variances σ2
k given by

µ=µαk + iµβk ,

σ2
k = σ2

αk
+ σ2

βk
,

where αk(ω) and βk(ω) are real-valued random variables. Let δ, α, β be arbitrary
numbers such that 0 ≤ α < β ≤ 2π, 0 < δ ≤ 1. B and C are the following subsets
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of the complex plane:

B = {z : α < arg z < β},
C = {z : 1− δ ≤ |z| ≤ 1 + δ}.

Nn(C, ω) and Nn(B,ω), the number of zeros of F (z, ω) contained in C and B,
respectively, are integer-valued random variables defined on the infinite-dimensional
probability space 〈E∞, B∞, P∞〉, where E = R or Z and the probability measure
is established by the sequence of independent random variables {ak(ω)}∞0 . (Such
a probability space is described, for example, in [3]).

One of the basic limit theorems in the theory of random polynomials was proved
by Sparo and Šur [10] (cf. [5]). It states that when the following conditions are
satisfied for all polynomials Fn(z, ω) :

(a) the coefficients {ak(ω)}n0 are equidistributed;
(b) P{ak(ω) = 0, k = 0, 1, . . . , n} 6= 1;
(c) E{log+ |ak(ω)|} <∞, k = 0, 1, . . . , n, where log+ |ak| = max{0, log |ak|},

then the following convergence takes place:

lim
n→∞

n−1Nn(C, ω) = 1,(1)

lim
n→∞

n−1Nn(B,ω) = (β − α)/2π(2)

in probability.
Arnold [2] improved this theorem and proved that the convergence result (1)

holds almost surely and in the r-th mean if the moduli of ak(ω) are equidistributed
and E{log |ak(ω)|} < ∞, k = 0, 1, 2, . . . . We shall show here that a more general
theorem can be proved and that, in fact, the condition on equidistribution can be
dropped. The convergence relations (1) and (2) hold almost surely if all coefficients
have finite first and second moments which satisfy certain conditions. This fact can
be interpreted in the following way: if the coefficients ak(ω), k = 0, 1, 2, . . . , satisfy
rather general conditions, then the distributions of the zeros of random polynomials
Fn(z, ω) tend, in a certain sense, to the uniform distribution on the circumference
of the unit circle when n tends to infinity.

In this article, we consider polynomials such that P{a0(ω) = 0} = 0. We now
formulate Theorem 1.

Theorem 1. Let {ak(ω)}∞0 be a sequence of independent random variables which
have continuous densities fk which are uniformly bounded in some neighborhood of
the origin with finite means µk and standard deviations σk that satisfy the condition

sup
{

lim
k→∞

k
√
|µk|, lim

k→∞
k
√
σk

}
= 1.(3)

Then (1) and (2) hold almost surely.

We also have the following theorem:

Theorem 2. Let {ak(ω)}∞0 be a sequence of independent random variables with
finite means and standard deviations such that

lim
k→∞

k
√
|µk| > lim

k→∞
k
√
σk.(4)
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Then the following equalities hold almost surely:

lim
ni→∞

n−1
i Nni(C

∗, ω) = 1,

lim
ni→∞

n−1
i Nni(B,ω) = (β − α)/2π,

(5)

where C∗ =
{
z : 1

lim k→∞
k
√
|µk|
− δ < |z| < 1

lim k→∞
k
√
|µk|

+ δ

}
, and {Fni(z, ω)}∞0

is a subsequence of {Fn(z, ω)}∞0 which consists of polynomials whose coefficients
satisfy

lim
ni→∞

ni

√
|µni | = lim

k→∞
k
√
|µk|.

The interpretation of the theorem is clear: if the radius of convergence of the

power series
∞∑
0
µkz

k formed by the means is strictly less than the radius of conv-

erence of the power series
∞∑
0
σkz

k formed by the standard deviations, then almost

surely a subsequence of {Fn(z, ω)}∞0 can be found such that for polynomials of suf-
ficiently high order belonging to the subsequence, the distribution of zeros is close
to uniform on the circumference of some circle, not necessarily the unit circle, with
center at the origin.

Our third and final theorem is a probabilistic analog of the Cauchy-Hadamard
theorem on the radius of convergence of a numerical power series. It enables one to
find radii of convergence for random power series defined on an infinite-dimensional
probability space established by a sequence of independent random variables with
finite means and standard deviations. For the specific case where the moduli of
the coefficients ak(ω) not only are independent but are also identically distributed
random variables, the problem of determining the radius of convergence has already
been investigated by Arnold [1] (cf. the discussion in Bharucha-Reid [4, page 44]).

Theorem 3. (a) For a sequence of independent random variables {ak(ω)}∞0 with
finite means and standard deviations which satisfy condition (4), the radius of con-

vergence of the random power series
∞∑
0
ak(ω)zk almost surely equals 1

lim k→∞
k
√
|µk|

.

(b) If for a sequence of independent random variables {ak(ω)}∞0 with finite means
and standard deviations which satisfy the inequality

lim
k→∞

k
√
σk ≥ lim

k→∞
k
√
|µk|,

there exists a subsequence {akj (ω)}∞0 such that the conditions
∞∑
k=0

P

{
|akj (ω)| > 1

kj
σkj

}
=∞,

lim
kj→∞

kj
√
σkj = lim

k→∞
k
√
σk

(6)

are satisfied, then the radius of convergence of the random power series
∞∑
k=0

ak(ω)zk

almost surely equals 1
lim k→∞ k

√
σk
.

We note that the set of conditions in (6) holds for a power series whose members
are distributed according to the Gaussian law, the uniform law, or any one of many
other frequently encountered laws.
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§2. Proof of Theorems 1–3

The proof of Theorem 1 utilizes Lemmas 1–3.

Lemma 1. If {ak(ω)}∞0 is a sequence of random variables with finite means and
standard deviations, then

lim
k→∞

k
√
|ak| ≤ sup

{
lim
k→∞

k
√
σk, lim

k→∞
k
√
|µk|

}
almost surely.

Proof. We can express {ak(ω)} as a sum of two sequences:

ηk(ω) =

{
ak(ω), if |µk| > σk,
0, otherwise;

η′k(ω) =

{
ak(ω), if |µk| ≤ σk,
0, otherwise.

The Chebyshev inequality implies that

P{|ηk(ω)− µk| > (k − 1)|µk|} ≤
σ2
k

(k − 1)2µ2
k

≤ 1
(k − 1)2

.(7)

From this inequality, it follows that
∞∑
k=1

P{|ηk(ω)| > k|µk|} <∞.

In view of the equality

lim
k→∞

k
√
|µk| = lim

k→∞
k
√
k|µk|(8)

and the Borel-Cantelli zero-one law, we conclude that

lim
k→∞

k
√
|ηk(ω)| ≤ lim

k→∞
k
√
|µk|(9)

almost surely.
Now we use the Chebyshev inequality for the sequence {η′k(ω)}∞0 :

P{|η′k(ω)− µk| > kσk} ≤
σ2
k

k2σ2
k

=
1
k2

(10)

for all k such that η′k 6≡ 0.
From this inequality, it follows that

∞∑
k=0

P{|µ′k| > (k + 1)σk} <∞.(11)

We conclude that

lim
k→∞

k

√
|η′k(ω)| ≤ lim

k→∞
k
√
σk(12)

almost surely. Since

lim
k→∞

k
√
|ak| ≤ sup

{
lim
k→∞

k
√
|ηk|, lim

k→∞
k

√
|η′k|
}
,(13)

the lemma is proved.
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Lemma 2. If for a sequence of independent random variables {ak(ω)}∞0 with con-
tinuous densities fk, a number A can be found such that in some ε-neighborhood of
the origin {z : |z| < ε} the inequality |fk(z)| < A is satisfied for any k, then almost
surely

lim k→∞
k
√
|ak| = 1.

Proof. Let b be some fixed number that belongs to the interval (0,1). It is clear
that if the conditions of the lemma are satisfied for any k, then the inequality

P{|ak(ω)| < bk} < πAb2k(14)

is satisfied for any k ≥ N, where N is any integer such that bN < ε. From (14) we
get

∞∑
k=0

P{|ak(ω)| < bk} <∞,(15)

which, in turn, implies that

lim k→∞
k
√
|ak(ω)| ≥ b

almost surely. This proves the lemma, since b was chosen arbitrarily.

Lemma 3 is due to Erdös and Turan [8]:

Lemma 3. Let ak, k = 0, 1, . . . , n, be arbitrary complex numbers not all of which

are equal to zero, and let N(α, β) denote the number of zeros of F (z) =
n∑
0
akz

k

which belong to the sector 0 ≤ α arg z < β. Then, for a0an 6= 0,

∣∣∣∣N(α, β) − (β − α)n
2π

∣∣∣∣ < 16

n log

n∑
0
|ak|

(|a0an|)1/2


1/2

.(16)

Remark. This result of Erdös and Turan was also utilized by Sparo and Šur in
proving their result that we quoted earlier in Section 1.

We note that Lemmas 1 and 2 imply that in the infinite-dimensional probability
space defined by a sequence {ak(ω)}∞0 which satisfies the conditions of Theorem 1,
the measure of the set of sequences

E =
{
{ak}∞0 : lim

k→∞
k
√
|ak| = 1

}
equals one.

Now let us consider an arbitrary number sequence {ak}∞1 which belongs to E,

and the corresponding sequence of polynomials
{
Fn(z) =

n∑
0
akz

k

}∞
0

. Let Kn
1 (a)

denote the number of zeros of Fn(z) belonging to the domain {z : |z| < 1 − a},
Kn

2 (a, b) the number of zeros of Fn(z) belonging to the domain {z : 1 − a ≤
|z| ≤ 1 + b}, and Kn

3 (b) the number of zeros of Fn(z) belonging to the domain
{z : |a| > 1 + b}. Let G > 0 be a lower bound of the set of absolute values of zeros
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of all polynomials Fn(z), n = 0, 1, 2, . . . . The Hurwitz inequality implies that for
any δ ∈ (0, 1),

lim
n→∞

n−1Kn
1 (δ) = 0.

Therefore, in order to prove the first assertion of Theorem 1, it is enough to show
that for any δ ∈ (0, 1), we have

lim
n→∞

n−1Kn
3 (δ) = 0.

Assume that the last assertion is not true. Then for any numbers δ and c and
for any integer L, there exists ` > L such that

K`
3(δ)
`

> c.

We stress that in our considerations below, δ and c will be fixed numbers. We find
a number δ′ ∈ (0, 1) which satisfies the following inequality:(

1
1− δ′

)1−c
< (1 + δ)

c
4 .(17)

Assume L = max{N ′, N ′′, N ′′′}, where N ′ is an integer such that for any n ≥ N ′

we have

(1 + δ)
nc
4 >

1
|an|

,(18)

N ′′ is an integer such that for any n ≥ N ′′ we have

(1 + δ)
nc
4 > |a0|,(19)

and N ′′′ is an integer such that for any n ≥ N ′′′ we have

(1 + δ)
nc
4 >

1
GK

n
1 (δ′)

.(20)

Then, for any n ≥ L, the following inequality is satisfied:

(1 + δ)nc >
(

1
1− δ′

)(1−c)n
· 1
|an|
· |a0| ·

1
GK

n
1 (δ′)

.(21)

Inequality (21) is equivalent to

(1 + δ)cn ·GKn
1 (δ′) · (1− δ′)(1−c)n >

|a0|
|an|

.(22)

Let ` ≥ L be an integer such that K`
3(δ) > `c. Then the product of the moduli

of the zeros of F`(z) which belong to {z : |z| > 1 + δ} is greater than (1 + δ)c`,
the product of the moduli of the zeros of F`(z) belonging to {z : 1 − δ′ > |z|} is
greater than GK

`
1(δ′), and the product of the moduli of the zeros of F`(z) which

belong to {z : 1− δ′ < |z| < 1+ δ} is greater than (1− δ′)(1−c)`. In view of (22), the

product of the moduli of all zeros of F`(z) turns out to be greater than
∣∣∣∣a0

a`

∣∣∣∣ , which

is impossible. This contradiction proves that for any number sequences {ak}∞0
belonging to E, the relative number of zeros of Fn(z) belonging to C tends to one
as n tends to infinity for any δ.

Thus the first assertion of Theorem 1 is proved.
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In view of Lemma 3, in order to prove the second assertion of Theorem 1, it is
enough to utilize the fact that for any sequence {ak}∞0 belonging to E, all elements
of which are nonzero, we have

lim
n→∞

1
n

log

n∑
0
|ak|

|a0an|1/2
= 0.(23)

In order to prove Theorem 2, we first prove Lemma 4.

Lemma 4. If for a sequence of independent random variables {ak(ω)}∞0 with finite
means and standard deviations, the inequality

lim
k→∞

k
√
|µk| > lim

k→∞
k
√
σk

is satisfied, then for any subsequence {aki(ω)}∞0 such that

lim
ki→∞

ki

√
|µki | = lim

k→∞
k
√
|µk|,

we have that

lim
ki→∞

ki

√
|aki | = lim

k→∞
k
√
|µk|

almost surely.

Proof. We note that for arbitrary δ > 0, there is an integer N1 such that for any
ki ≥ N1,

ki

√
|µki | > R1 − δ, where R1 = lim k→∞

k
√
|µk|. Since limki→∞

√
σki ≤

R2 = lim k→∞
√
σk for any δ > 0, there is an integer N2 such that for any ki ≥ N2,

ki
√
σki < R2 + δ. Let us choose δ so that

R2 + δ

R1 − δ
= p < 1.

Then for any ki ≥ sup{N1, N2}, the following inequality is satisfied:

σ2
ki

µ2
ki

< p2ki .(24)

This inequality, together with the inequality

P{|µki − aki(ω)| > 1
2
|µki |} <

4δ2
ki

µ2
ki

,(25)

implies that
∞∑
i=1

P{|µki − aki(ω)| > 1
2
|µki |} <∞.(26)

This proves the lemma.

Lemma 4 implies that in a probability space defined by a sequence {ak(ω)}∞0
which satisfies the conditions of Theorem 2, the measure of the set

E∗ =
{
{ak}∞0 : lim

k→∞
k
√
|ak| = lim

ki→∞
ki

√
|aki | = lim

k→∞
k
√
|µk|

}
equals one.
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Consider an arbitrarily chosen sequence {ak}∞0 belonging to E∗. Obviously, for
the sequence

{ck}∞0 =

 ak(
lim k→∞

k
√
|µk|

)k

∞

0

,

we have

lim
k→∞

k
√
|ck| = lim

ki→∞
ki

√
|cki | = 1.

In a way similar to the technique used in the proof of Theorem 1, we can show that
for arbitrary δ > 0, α, β such that 0 ≤ α < β < 2π, we have the convegence results

lim
ni→∞

n−1
i Nni(B) =

β − α
2π

,

lim
ni→∞

n−1
i Nni(C

′) = 1,

where C′ =
{

1− δ lim k→∞
k
√
|µk| < |z| < 1 + δ lim k→∞

k
√
|µk|

}
, and Nni(B) and

Nni(C′) are the number of zeros of
ni∑
0
ckz

k belonging to B and C′, respectively.

Since every zero of the polynomial
ni∑
0
akz

k can be expressed as a corresponding

zero of the polynomial
ni∑
0
ckz

k divided by lim k→∞
k
√
|µk|, Theorem 2 is proved.

Corollary. If, in addition to the conditions of Theorem 2, a sequence of random
variables {ak(ω)}∞0 satisfies the condition

lim
k→∞

k
√
|µk| = lim

k→∞
k
√
|µk|,

then for arbitrary δ > 0, α, β such that 0 ≤ α < β < 2π, we have

lim
n→∞

n−1Nn(C∗, ω) = 1,

lim
n→∞

n−1Nn(B,ω) =
β − α

2π
,

(27)

almost surely.

Proof of Theorem 3. The first assertion of the theorem follows directly from Lem-
mas 1 and 4. We now prove the second assertion of the theorem. From conditions
(6), it follows that

lim
k→∞

k
√
|ak| ≥ lim

k→∞
k
√
σk

almost surely. Lemma 1 implies that lim k→∞
k
√
|ak| ≤ lim k→∞

k
√
δk almost surely

provided that lim k→∞ k
√
σk ≥ lim k→∞

k
√
|µk|. This completes the proof.
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§3. Estimation of the degree of convergence

Theorem 1 on the asymptotic behavior of zeros of random polynomials does not
enable us to evaluate the degree of convergence of the sequence of random variables

{ζn}∞n=0 =
{
Nn(B,ω)

n

}∞
0

, B = {z : α < arg z < β},

defined on the infinite-dimensional probability space 〈E∞, B∞ , P∞〉 to the con-
stant β−α

2π if the sequence {ak(ω)}∞0 does not satisfy some additional conditions.
For the case where means and standard deviations of the coefficients are uniformly
bounded, the degree of convergence can be estimated. This enables us to estimate
numerically the joint distribution of zeros for polynomials of high degrees. We now
show how this can be done.

Let p and ε be fixed numbers, let E∗ denote sup{µ|an(ω)|}∞0 , and let σ∗ denote
sup{σ|an(ω)|}∞0 . Then, there is an integer N such that for any n ≥ N,

P

{∣∣∣∣ζn − β − α
2π

∣∣∣∣ < ε

}
> 1− p.(28)

We now give a procedure to determine the value N. From the Chebyshev inequality,
it follows that

P

{∣∣∣∣∣
n∑
0

|ak(ω)| − µ
(

n∑
0

|ak(ω)|
)∣∣∣∣∣ ≥ √n+ 1σ

(
n∑
0

|ak(ω)|
)}
≤ 1
n+ 1

.(29)

Since {ak(ω)}n0 are independent, the following inequalities are satisfied:

E

(
n∑
0

|ak(ω)|
)
≤ (n+ 1)E∗,(30)

σ

(
n∑
0

|ak(ω)|
)
≤
√
n+ 1σ∗.(31)

Inequalities (29)–(31) imply that

P

{
n∑
0

|ak(ω)| ≥ (n+ 1)(E∗ + σ∗)

}
≤ 1
n+ 1

.(32)

Let A be a number such that for any n ≥ 0,

P

{
1

|an(ω)| > A

}
<
p

4
.(33)

In order to find A, we can utilize the uniform boundedness of the densities fk of
{ak(ω)}∞0 in some neighborhood of the origin. Let N ′ be an integer such that for
any n ≥ N ′,

1
n+ 1

<
p

2
.(34)

From (32)–(34), it follows that for any n ≥ N ′,

P


n∑
0
|ak(ω)|

|a0(ω)an(ω)|1/2 > (n+ 1)(E∗ + σ∗)A

 < p.(35)
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Let N ′′ be an integer such that for any n ≥ N ′′, the following inequality is satisfied:

16
[

log[(n+ 1)(E∗ + σ∗)A]
n

]
< ε.(36)

Let N denote max(N ′, N ′′). Then, by Lemma 3, for any n ≥ N, the relation (28)
is satisfied.
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