Peirce gradings of Jordan systems
Authors:
José A. Anquela and Teresa Cortés
Journal:
Proc. Amer. Math. Soc. 130 (2002), 2543-2551
MSC (2000):
Primary 17C27, 17C10, 17C20
DOI:
https://doi.org/10.1090/S0002-9939-02-06346-3
Published electronically:
March 12, 2002
MathSciNet review:
1900860
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we prove that the diagonal components and
of a Peirce grading of a Jordan pair or triple system
, inherit strong primeness, primitivity and simplicity from
.
- 1. Alain D’Amour, Quadratic Jordan systems of Hermitian type, J. Algebra 149 (1992), no. 1, 197–233. MR 1165208, https://doi.org/10.1016/0021-8693(92)90013-C
- 2. Alain D’Amour and Kevin McCrimmon, The local algebras of Jordan systems, J. Algebra 177 (1995), no. 1, 199–239. MR 1356368, https://doi.org/10.1006/jabr.1995.1294
- 3. José A. Anquela and Teresa Cortés, Primitive Jordan pairs and triple systems, J. Algebra 184 (1996), no. 2, 632–678. MR 1409234, https://doi.org/10.1006/jabr.1996.0280
- 4. José A. Anquela and Teresa Cortés, Primitivity in Jordan systems is ubiquitous, J. Algebra 202 (1998), no. 1, 295–314. MR 1614222, https://doi.org/10.1006/jabr.1997.7274
- 5. J. A. Anquela, T. Cortés, ``Local and Subquotient Inheritance of Simplicity in Jordan Systems". J. Algebra 240 (2001), 680-704.
- 6. José A. Anquela, Teresa Cortés, Ottmar Loos, and Kevin McCrimmon, An elemental characterization of strong primeness in Jordan systems, J. Pure Appl. Algebra 109 (1996), no. 1, 23–36. MR 1386811, https://doi.org/10.1016/0022-4049(95)00086-0
- 7. Ottmar Loos, Jordan pairs, Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin-New York, 1975. MR 0444721
- 8. Ottmar Loos and Erhard Neher, Complementation of inner ideals in Jordan pairs, J. Algebra 166 (1994), no. 2, 255–295. MR 1279257, https://doi.org/10.1006/jabr.1994.1151
- 9. Kevin McCrimmon, Peirce ideals in Jordan triple systems, Pacific J. Math. 83 (1979), no. 2, 415–439. MR 557943
- 10. Kevin McCrimmon and Ephim Zel′manov, The structure of strongly prime quadratic Jordan algebras, Adv. in Math. 69 (1988), no. 2, 133–222. MR 946263, https://doi.org/10.1016/0001-8708(88)90001-1
- 11. Erhard Neher, Involutive gradings of Jordan structures, Comm. Algebra 9 (1981), no. 6, 575–599. MR 608506, https://doi.org/10.1080/00927878108822603
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 17C27, 17C10, 17C20
Retrieve articles in all journals with MSC (2000): 17C27, 17C10, 17C20
Additional Information
José A. Anquela
Affiliation:
Departamento de Matemáticas, Universidad de Oviedo, C/ Calvo Sotelo s/n, 33007 Oviedo, Spain
Email:
anque@pinon.ccu.uniovi.es
Teresa Cortés
Affiliation:
Departamento de Matemáticas, Universidad de Oviedo, C/ Calvo Sotelo s/n, 33007 Oviedo, Spain
Email:
cortes@pinon.ccu.uniovi.es
DOI:
https://doi.org/10.1090/S0002-9939-02-06346-3
Keywords:
Jordan system,
Peirce grading,
simple,
primitive,
strongly prime
Received by editor(s):
June 16, 2000
Received by editor(s) in revised form:
April 16, 2001
Published electronically:
March 12, 2002
Additional Notes:
This work was partially supported by the DGES, PB97-1069-C02-02 and the Ministerio de Ciencia y Tecnología, BFM2001-1938-C02-02
Dedicated:
Dedicated to the memory of Eulalia García Rus
Communicated by:
Lance W. Small
Article copyright:
© Copyright 2002
American Mathematical Society