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OPERATOR HILBERT SPACES WITHOUT
THE OPERATOR APPROXIMATION PROPERTY

ALVARO ARIAS

(Communicated by N. Tomczak-Jaegermann)

Abstract. We use a technique of Szankowski to construct operator Hilbert
spaces that do not have the operator approximation property, including an
example in a noncommutative Lp space for p 6= 2.

1. Introduction and preliminaries

A Banach space X has the approximation property, or AP, if the identity op-
erator on X can be approximated uniformly on compact subsets of X by linear
operators of finite rank. In the 50’s, Grothendieck [G] investigated this property
and found several equivalent statements. For example, he proved that X has the
AP iff the natural map J : X∗⊗̂X → X∗⊗̌X is one-to-one (⊗̂ is the projective
tensor product of Banach spaces and ⊗̌ is the injective tensor product of Banach
spaces). However, it remained unknown if every Banach space had the AP until
Enflo [E] constructed the first counterexample in the early 70’s. In [S], Szankowski
gave a very explicit example of a subspace of `p, 1 < p < 2, without the AP. He
considered X = (

∑∞
n=1⊕`n2 )p, which is isomorphic to `p, and defined Z to be the

closed span of some vectors of length six. He then used a clever combinatorial argu-
ment to exploit the difference between the 2-norm of the blocks and the p-norm of
the sum to prove that Z fails the approximation property. Szankowski’s technique
is fairly general. In the second section of this paper we will use it to show that the
`2-sum (as defined in [P2]) of row operator spaces has a subspace without the oper-
ator space version of the approximation property, or OAP. Since this subspace is a
Hilbert space at the Banach space level, it has the Banach approximation property
and even a basis. Thus, this is an example of an operator space with the AP but
without the OAP. This answers a question of J. Kraus. Furthermore, this is also
the first example of an operator space with a basis but without a complete basis.
M. Junge suggested that a similar construction using rows in the Schatten p-class
Sp and Rademacher functions in Lp[0, 1] could lead to an example of a Hilbertian
subspace of Lp[Sp] failing the OAP. In the third section we verify that this is indeed
possible. These are new examples of Hilbertian subspaces of noncommutative Lp
spaces that are not completely complemented, even if p > 2.

An operator space E is a Banach space E with an isometric embedding into
B(H), the set of all bounded operators on a Hilbert space H . Or, equivalently, an
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operator space E is a closed subspace of B(H). If E ⊂ B(H1) and F ⊂ B(H2) are
operator spaces, their minimal tensor product E⊗minF is the closure of the algebraic
tensor product E ⊗ F in B(H1 ⊗2 H2). A linear map u : E → F is completely
bounded, or cb, if for every operator spaceG, the map 1G⊗u : G⊗minE → G⊗minF
is bounded. The completely bounded norm of u, or ‖u‖cb, is the supremum of
‖1G⊗u‖, where G runs over all operator spaces G. It turns out that it is enough to
verify that 1G⊗ u is bounded when G is K(`2), the set of all compact operators on
the Hilbert space `2, and that ‖u‖cb = ‖1K(`2)⊗u‖. The set of all cb-maps from E to
F is denoted by CB(E,F ). Independently of each other, Blecher and Paulsen [BP]
and Effros and Ruan [ER1] gave E∗, the Banach space dual of E, an operator space
structure that gives E∗⊗minF the norm induced by CB(E,F ). This indicates that
the minimal tensor product is the operator space analogue of the injective tensor
product of Banach spaces. In the same papers, Blecher and Paulsen [BP] and Effros
and Ruan [ER1] introduced the operator space analogue of the projective tensor
product. This is denoted by E⊗̂F and satisfies (E⊗̂F )∗ = CB(E,F ∗). We refer to
[ER3], [J], and [P3] for more information about operator spaces.

It is well known that the compact subsets of a Banach space X are contained
in the convex hull of null sequences in X . Since there is a correspondence between
null sequences in X and elements of c0⊗̌X , it is easy to see that X has the AP iff
for every u ∈ c0⊗̌X and every ε > 0 there exists a finite rank operator on X such
that ‖u− (I ⊗ T )(u)‖ < ε. Based on this observation, Effros and Ruan [ER2] said
that an operator space V has the operator approximation property, or OAP, if for
every u ∈ K(H) ⊗min V and every ε > 0 there exists a finite rank operator T on
V such that ‖u− (I ⊗ T )(u)‖ < ε. They proved that an operator space V has the
OAP if and only if the natural map J : V ∗⊗̂V → V ∗ ⊗min V is one-to-one.

The following criterion allows us to check that J is not one-to-one, when V fails
the OAP.

Enflo’s Criterion. If there exists a sequence of finite rank operators βn ∈ V ∗⊗V
satisfying:

(i) trace(βn) = 1 for every n ∈ N,
(ii) ‖βn‖V ∗⊗minV → 0 as n→∞, and
(iii)

∑∞
n=1 ‖βn − βn−1‖V ∗⊗̂V <∞,

then V does not have the OAP.

Indeed, β = β1 +
∑∞

n=2 βn − βn−1 = limn βn belongs to V ∗⊗̂V by (iii). Jβ = 0
by (ii). And since tr(β) = 1, β is not zero. Hence J is not one-to-one and V fails
the OAP.

2. An example using complex interpolation

For each n ∈ N, let ∆n be a partition of σn = {2n, 2n + 1, 2n + 2, . . . , 2n+1 − 1}.
Then {B ∈ ∆n : n ∈ N} is a partition of N. For each B ∈ ∆n, let RB be the row
Hilbert space with orthonormal basis {ej : j ∈ B}. We define X to be the `2-sum
of these row spaces. More precisely, X is the complex interpolation space between
(
∑∞

n=1

∑
B∈∆n

⊕RB)∞ and (
∑∞

n=1

∑
B∈∆n

⊕RB)1 of parameter θ = 1
2 (see [P2],

page 34). That is,

X =
( ∞∑
n=1

∑
B∈∆n

⊕RB
)
`2

=

(( ∞∑
n=1

∑
B∈∆n

⊕RB
)
∞
,

( ∞∑
n=1

∑
B∈∆n

⊕RB
)

1

)
1
2

.
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At the Banach space level, X is a Hilbert space with orthonormal basis {ei : i ∈
N}. But at the operator space level, X is a combination of row Hilbert spaces and
OH , the self-dual operator Hilbert space introduced by Pisier in [P1]. If A ⊂ N,
let XA = span{ei : i ∈ A} ⊂ X . It follows from the definition of X that if there
exists n ∈ N such that A ⊂ B for some B ∈ ∆n, then XA is completely isometric
to RA, the row Hilbert space with orthonormal basis {ei : i ∈ A}. And if for each
n ∈ N, A has at most one point from each element in ∆n (i.e., card(A∩B) ≤ 1 for
every B ∈ ∆n, n ∈ N), then XA is completely isometric to OHA.

Let Z be the closed subspace of X spanned by

zi = e2i − e2i+1 + e4i + e4i+1 + e4i+2 + e4i+3, i = 1, 2, · · · .

Theorem 1. With the appropriate selection of ∆n, Z does not have the OAP.

For each i ∈ N, let z∗i = 1
2 (e∗2i − e∗2i+1), where the e∗i ’s are biorthogonal to the

ei’s. Then let

βn =
1
2n
∑
i∈σn

z∗i ⊗ zi for n ≥ 2.

We need to check that the βn’s satisfy the conditions of Enflo’s criterion.
Condition (i)

This is trivially verified. Since z∗i (zi) = 1 for every i ≥ 1, we see that trace(βn) =
(1/2n)

∑
i∈σn z

∗
i (zi) = (1/2n)|σn| = 1.

Condition (ii)
Since ‖βn‖Z∗⊗minZ ≤ ‖βn‖X∗⊗minX = ‖βn‖cb, we will estimate the cb-norm of

βn : X → X . However, it follows from the definition of βn that we only need to
estimate the cb-norm of βn : Xσn+1 → Xσn+1∪σn+2 , where Xσk = span{ei : i ∈ σk}.
Let I1 : Xσn+1 → Rσn+1 and I2 : Rσn+1∪σn+2 → Xσn+1∪σn+2 be the formal identity
maps, and let β̃n : Rσn+1 → Rσn+1∪σn+2 be β̃n = 1

2n

∑
i∈σn z

∗
i ⊗ zi (that is, β̃n has

the same matrix representation as βn, but it is defined on row operator spaces).
Then βn = I2 ◦ β̃n ◦ I1. Since the zi’s, i ∈ σn, have disjoint support, the z∗i ’s,
i ∈ σn, have also disjoint support, and the row spaces are homogeneous, it is easy
to see that ‖β̃n‖cb = ‖β̃n‖ = 1

2n+1

√
3. We will prove condition (ii) by checking that

‖I1‖cb‖I2‖cb ≤
√

2n+2.
From the definition of X , we see that Xσn+1 is equal to (

∑
B∈∆n+1

⊕RB)`2 ,
the complex interpolation space

(
(
∑

B∈∆n+1
⊕RB)∞, (

∑
B∈∆n+1

⊕RB)1

)
1
2
. It is

easy to check that ‖I1 : (
∑
B∈∆n+1

⊕RB)∞ → Rσn+1‖cb ≤
√
|∆n+1 and that

‖I1 : (
∑
B∈∆n+1

⊕RB)1 → Rσn+1‖cb ≤ 1. Therefore ‖I1‖cb ≤ (|∆n+1|)
1
4 . Similarly,

‖I2‖cb ≤ (|∆n+1| + |∆n+2|)
1
4 . Since |∆k| ≤ 2k for every k ∈ N, we see that

‖I1‖cb‖I2‖cb ≤
√

2n+2.
Condition (iii)

Using the fact that z∗i = 1
4 (e∗4i + e∗4i+1 + e∗4i+2 + e∗4i+3) on Z, we get that

βn − βn−1 =
1

2n+1

∑
i∈σn

(e∗2i − e∗2i+1)⊗ (e2i − e2i+1 + e4i + e4i+1 + e4i+2 + e4i+3)

− 1
2n+1

∑
i∈σn−1

(e∗4i+e
∗
4i+1+e∗4i+2+e∗4i+3)⊗ (e2i−e2i+1+e4i+e4i+1+e4i+2+e4i+3)
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= 1
2n+1

∑
i∈σn−1



e∗4i⊗(e4i−e4i+1+e8i+e8i+1+e8i+2+e8i+3−e2i+e2i+1−e4i−e4i+1−e4i+2−e4i+3)

e∗4i+1⊗(−e4i+e4i+1−e8i−e8i+1−e8i+2−e8i+3−e2i+e2i+1−e4i−e4i+1−e4i+2−e4i+3)

e∗4i+2⊗(e4i+2−e4i+3+e8i+4+e8i+5+e8i+6+e8i+7−e2i+e2i+1−e4i−e4i+1−e4i+2−e4i+3)

e∗4i+3⊗(−e4i+2+e4i+3−e8i+4−e8i+5−e8i+6−e8i+7−e2i+e2i+1−e4i−e4i+1−e4i+2−e4i+3).

Note that after cancellation, each of the vectors in the brace has nine terms. Two
of them cancel out and two are equal. Then we can write each of them as a linear
combination of nine basis vectors. Eight of them have coefficients equal to ±1 and
the other has a coefficient equal to ±2.

Szankowski defined nine functions fk : N → N, k ≤ 9, to index these vectors.
Let n = 4i + l and l = 0, 1, 2, 3. Then f1(4i + l) = 2i and f2(4i + l) = 2i + 1.
For k = 3, 4, 5, fk(4i + l) = 4i + [(l + 1) mod 4]. For l = 0, 1, f6(4i + l) = 8i,
f7(4i + l) = 8i + 1, f8(4i + l) = 8i + 2, and f9(4k + l) = 8i + 3. And finally,
for l = 2, 3, f6(4i + l) = 8i + 4, f7(4i + l) = 8i + 5, f8(4i + l) = 8i + 6, and
f9(4k + l) = 8i+ 7. Then we have

βn − βn−1 =
1

2n+1

∑
j∈σn+1

e∗j ⊗ yj,

where yj =
∑9
k=1 = λj,kefk(j) ∈ Z. Recall that eight of the λj,k’s have absolute

value equal to one, and one has absolute value equal to 2.
The following lemma of Szankowski provides the key combinatorial argument

(see [S] and [LT], page 108).

Lemma 2 (Szankowski). There exist partitions ∆n and ∇n of σn into disjoint sets,
and a sequence mn ≥ 2

n
8−2, n = 2, 3, . . . , so that

1 ∀A ∈ ∇n,mn ≤ card(A) ≤ 2mn,
2 ∀A ∈ ∇n, ∀B ∈ ∆n, card(A ∩B) ≤ 1,
3 ∀A ∈ ∇n, ∀1 ≤ k ≤ 9, fk(A) is contained in an element of ∆n−1,∆n, or

∆n+1.

(Notice that fk(σn) ⊂ σn−1 for k = 1, 2, fk(σn) ⊂ σn for k = 3, 4, 5, and
fk(σn) ⊂ σn+1 for k = 6, 7, 8, 9.)

Since ∇n+1 is a partition of σn+1, we have that

βn − βn−1 =
1

2n+1

∑
A∈∇n+1

∑
j∈A

e∗j ⊗ yj

 .(1)

Lemma 3. For every A ∈ ∇n+1, ‖
∑
j∈A e

∗
j ⊗ yj‖Z∗⊗̂Z ≤ 18

(
card(A)

) 3
4 .

The last condition of Enflo’s criterion follows immediatedly from (1), Lemma 2,
and Lemma 3. Indeed,

‖βn − βn−1‖Z∗⊗̂Z ≤
1

2n+1
card(∇n+1)18 max

A∈∇n+1
card(A)

3
4

≤ 1
2n+1

2n+1

mn+1
18(2mn+1)

3
4 ≤ 36

m
1
4
n+1

,

which is clearly summable.
We only need to prove Lemma 3. For this, we need the result of Pisier (see

remark 2.11 of [P1]) that CB(Rn, OHn) = Sn4 , where Sn4 is the Schatten 4-class.
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Consequently, if S : OHn → Rn, then ‖S‖OHn⊗̂Rn = ‖S‖Sn4/3
. In particular, if

I : OHn → Rn is the formal identity, ‖I‖OHn⊗̂Rn = n3/4.

Proof of Lemma 3. The element γ =
∑
j∈A e

∗
j ⊗ yj ∈ X∗⊗̂Z induces a finite rank

map γ : X → Z. The restriction of γ to Z is the map α = γ|Z : Z → Z, which
clearly satisfies α =

∑
j∈A q(e

∗
j ) ⊗ yj ∈ Z∗⊗̂Z, where q = (ιZ)∗ : X∗ → Z∗ is

the adjoint of the inclusion ιZ : Z → X . Since (Z∗⊗̂Z)∗ = CB(Z∗, Z∗), we have
that ‖α‖Z∗⊗̂Z = sup{|〈T, α〉| : T : Z∗ → Z∗, ‖T ‖cb ≤ 1}, where 〈·, ·〉 is the trace
duality.

We will see that we can factor α through the formal identity map I : OHA → RA,
where RA is the row Hilbert space with basis {δj : j ∈ A}. Recall that the projective
tensor norm of I : OHA → RA, viewed as an element of OHA⊗̂RA, is equal to(
card(A)

) 3
4 .

Let Ψ : RA → Z be the map defined by Ψ(δj) = yj. We claim that ‖Ψ‖cb ≤ 18.
Indeed, if aj ∈ B(H) for j ∈ A, then

∑
j∈A

ai ⊗ yj =
∑
j∈A

aj ⊗
9∑

k=1

λj,kefk(j) =
9∑

k=1

∑
j∈A

λj,kaj ⊗ efk(j)

 .
It follows from (3) of Lemma 2 that {fk(j) : j ∈ A} ⊂ B for some B in ∆n,∆n+1,
or ∆n+2. Then the definition of X implies that the span of the efk(j)’s for j ∈ A is
a row operator space. Hence,∥∥∥∥∑

j∈A
ai ⊗ yj

∥∥∥∥ ≤ (9)(2)
∥∥∥∥∑
j∈A

aja
∗
j

∥∥∥∥ 1
2

= 18
∥∥∥∥∑
j∈A

aj ⊗ δj
∥∥∥∥.

Let XA = span{ej : j ∈ A}. By (2) of Lemma 2, all the elements of A belong
to different elements of the partition ∆n+1. This implies that XA is completely
isometric to OHA. Let PA : X → XA be the completely contractive projection
onto XA, and let I : XA → RA be the formal identity. Then we have that

α = Ψ ◦ I ◦ PA ◦ ιZ .

If T : Z∗ → Z∗ is completely bounded, then

|〈T, α〉| = |tr(T ∗ ◦ α)| = |tr(T ∗ ◦Ψ ◦ I ◦ PA ◦ ιZ)| = |tr(PA ◦ ιZ ◦ T ∗ ◦Ψ ◦ I)|

≤ ‖PA ◦ ιZ ◦ T ∗ ◦Ψ‖cb‖I‖OHA⊗̂RA ≤ 18‖T ‖cb
(
card(A)

) 3
4 .

This finishes the proof of Lemma 3.

Remarks. We can replace the `2 sum of Rn’s by the `2 sum of Cn’s or by the `2
sum of any other family of homogeneous Hilbert spaces which is “far” from OH
(e.g., Rnp = (Rn, Cn) 1

p
, p 6= 2). The same proof gives that all of these spaces

have subspaces failing the operator approximation property. We can also replace
the `2 sum of Rn’s by the `p sum of Rn’s. However, when p 6= 2, then X is no
longer a Hilbert space. The subspace Z of X will fail the operator approximation
property, but Szankowski’s theorem actually gives that Z already fails the Banach
approximation property.
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3. An example in noncommutative Lp

We recall standard facts about noncommutative Lp spaces. Sp is the Schatten p-
class on `2 with the operator space structure induced by the complex interpolation
Sp = (S∞, S1) 1

p
(see [P2]). Rp = span{e1n : n ∈ N} is the row of Sp, and Cp =

span{en1 : n ∈ N} is the column of Sp. Both of them are taken with the operator
space structure they inherit from Sp. It follows from Lemma 1.7 of [P2] that
the operator space structure of any operator space E is determined by Sp[E], the
noncommutative E-valued Sp-space. In particular, the operator space structures
of Rp and Sp are determined by Sp[Rp] and Sp[Cp]. That is, if an ∈ Sp is a finite
family, then ∥∥∥∥∥∑

n

an ⊗ e1n

∥∥∥∥∥
Sp[Rp]

=

∥∥∥∥∥∥
(∑

n

ana
∗
n

) 1
2

∥∥∥∥∥∥
Sp

and ∥∥∥∥∥∑
n

an ⊗ en1

∥∥∥∥∥
Sp[Cp]

=

∥∥∥∥∥∥
(∑

n

a∗nan

) 1
2

∥∥∥∥∥∥
Sp

.

We will also consider Rnp and Cnp , the row and column of Snp ; and more generally, if
B is a subset of N, RBp and CBp are the row and column of SBp , the Schatten p-class
on the Hilbert space with orthonormal basis indexed by B.

The operator space structure of Lp[0, 1] is determined by Sp[Lp]. We note that
by Proposition 2.1 of [P2], Sp[Lp] is completely isometric to the more familiar
Lp[Sp]. We will consider Rp ⊂ Lp[0, 1], the subspace generated by the Rademacher
functions (εn)n∈N, with the operator space structure inherited from Lp. It is known
that the operator space structure of Rp is determined by the noncommutative
Khintchine’s inequalities of [L-P] and [L-PP]. If p ≥ 2, Rp is completely isomorphic
to Rp∩Cp and Rnp is completely isomorphic to Rnp ∩Cnp , with a constant depending
only on p. If 1 ≤ p ≤ 2, Rp is completely isomorphic to Rp + Cp and Rnp is
completely isomorphic to Rnp +Cnp , with a constant depending only on p (see [P2],
Section 8.4, for details).

Recall that the classical Khintchine’s inequality states that there exist constants
Ap and Bp such that for any square summable sequence (αn)

Ap

∥∥∥∥∑
n

αnεn

∥∥∥∥
2

≤
∥∥∥∥∑
n

αnεn

∥∥∥∥
p

≤ Bp
∥∥∥∥∑
n

αnεn

∥∥∥∥
2

.(2)

We will now construct a Hilbertian subspace of Lp[Sp] as a combination of
Rademacher functions in Lp and the row of Sp. The idea is to put a finite set
of Rademacher functions in the (1,1) row of Sp, then to put another finite set of
Rademacher functions in the (1,2) row of Sp, a third finite set of Rademacher func-
tions in the (1,3) row of Sp, and so on. At the end we get a space X which plays the
same role as the space X of the previous section. To make the construction more
precise, recall that for each n ∈ N, ∆n is a partition of σn = {2n, 2n + 1, . . . , 2n+1}.
Then P = {B ∈ ∆n : n ∈ N} is a partition of N. For convenience, we index the
row of Sp by the countable set P . That is, Rp = span{e1B : B ∈ P}. Define

X = span{e1B ⊗ εk : B ∈ P , k ∈ B} ⊂ Sp[Lp] ≡ Lp[Sp].
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Alternatively, define ek := e1B ⊗ εk ∈ Sp[Lp], where B ∈ P is the element in the
partition that contains k ∈ N, and let X be the closed span of the ek’s.

Proposition 4. At the Banach space level, X is isomorphic to a Hilbert space.

Proof. An element f ∈ X has the form f =
∑

B∈P e1B ⊗ fB, where fB belongs to
span{ek : k ∈ B} = RBp . Since Sp[Lp] is completely isometric to Lp[Sp], we view
f : [0, 1]→ Sp as an Sp-valued function with norm

‖f‖Lp[Sp] =
(∫ 1

0

‖f(t)‖pSpdt
) 1
p

=
[∫ 1

0

( ∑
B∈P
|fB(t)|2

) p
2

dt

] 1
p

.

If p ≥ 2, then ‖f‖Lp[Sp] ≥
(∫ 1

0
(
∑

B∈B |fB(t)|2)
2
2 dt
) 1

2 =
√∑

B∈P ‖fB‖22. To check
the opposite direction, we use that Lp[Sp] has type 2, and that

∑
B∈P e1B ⊗ fB

is an unconditional sum. Then, ‖f‖Sp[Lp] ≤ C
√∑

B∈P ‖fB‖2p. Since fB ∈ RBp ,
it follows from (2) that ‖fB‖p ≤ Bp‖fB‖2. Therefore, ‖f‖Sp[Lp] is equivalent to√∑

B∈P ‖fB‖22, which is the norm of a Hilbert space.

The case 1 ≤ p ≤ 2 is similar. We first check that ‖f‖Lp[Sp] ≤
√∑

B∈P ‖fB‖22.
Then we use the cotype 2 of Lp[Sp] and the Rademacher estimate of (2) to conclude

that ‖f‖Lp[Sp] ≥ C
√∑

B∈P ‖fB‖22.

The operator space structure of X can be described easily. The blocks of X are
indexed by B ∈ P , and they are completely isometric to span{εk : k ∈ B} = RBp .
When p ≥ 2, RBp is completely isomorphic (with constant depending only on p) to
RBp ∩ CBp , and when 1 ≤ p ≤ 2, RBp is completely isomorphic to RBp + CBp . Since
the sum is taken in an Rp sense, we obtain the following complete isomorphisms:

X ≈
( ∞∑
n=1

∑
B∈∆n

⊕
[
RBp ∩CBp

])
Rp

for p ≥ 2,

X ≈
( ∞∑
n=1

∑
B∈∆n

⊕
[
RBp + CBp

])
Rp

for 1 ≤ p ≤ 2.

To apply Enflo’s criterion, we need the following estimates.

Lemma 5. Let 1 ≤ p ≤ ∞. Then the normed spaces CB(Cnp , R
n
p ), CB(Rnp , C

n
p ),

CB(Cnp , R
n
p∩Cnp ), and CB(Rnp , R

n
p∩Cnp ) are isomorphic to Snr , the Schatten r-class,

where r satisfies 1
r = | 1p −

1
2 |.

Proof. It is enough to prove that CB(Cnp , R
n
p ) is isomorphic to Snr . The proof for the

second space is similar, and the proof for the last two spaces follows from the first
two. By duality, it is enough to assume that 1 ≤ p ≤ 2. Let T ∈ CB(Cnp , R

n
p ). Write

T = UDV , where U : Rnp → Rnp and V : Cnp → Cnp are unitary, and D : Cnp → Rnp is
the diagonal operator Dei1 = λie1i with λi equal to the ith singular number of T .
Since Rnp and Cnp are homogeneous Hilbert spaces, we conclude that ‖T ‖cb = ‖D‖cb.
By Lemma 1.7 of [P2],

‖D‖cb = sup


∥∥∑

i≤n λie1i ⊗ ai
∥∥
Rnp [Sp]∥∥∑

i≤n ei1 ⊗ ai
∥∥
Cnp [Sp]

: ai ∈ Sp, i ≤ n

 .
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It is well known that, for 1 ≤ p ≤ 2, ‖
∑
i≤n λie1i⊗ ai‖ ≤

(∑
i≤n |λi|p‖ai‖

p
Sp

) 1
p and

‖
∑
i≤n ei1 ⊗ ai‖ ≥

(∑
i≤n ‖ai‖2Sp

) 1
2 . Moreover, if ai = biei1 ∈ Snp for some scalars

bi ∈ C, the inequalities are attained. Since ‖ai‖Sp = |bi|, we have

‖D‖cb = sup


(∑
i≤n
|λibi|p

) 1
p

:
√∑
i≤n
|bi|2 ≤ 1

 =
(∑
i≤n
|λi|r

) 1
r

= ‖T ‖Snr .

This finishes the proof.

Since CB(Cnp , R
n
p ∩Cnp ) is the dual of (Rnp )∗⊗̂(Rnp +Cnp ), it follows from Lemma

5 that for every T ∈ (Rnp )∗⊗̂(Rnp +Cnp ) we have ‖T ‖(Rnp )∗⊗̂(Rnp+Cnp ) = ‖T ‖Sn
r′
, where

1
r + 1

r′ = 1. In particular, if T = In is the “formal” identity map, then

‖In||(Rnp )∗⊗̂(Rnp+Cnp ) = n
1
r′ .(3)

Similarly,

‖In||(Rnp∩Cnp )∗⊗̂Rnp = n
1
r′ .(4)

With these estimates, we can follow Szankowski’s construction to obtain the
following theorem. We sketch the proof.

Theorem 6. For every 1 ≤ p < ∞, p 6= 2, there exists a Hilbertian subspace of
Lp[Sp] without the operator approximation property.

Recall that X is the closed span of ek := e1B ⊗ εk, k ∈ N. For each i = 1, 2, . . . ,
let zi = e2i − e2i+1 + e4i + e4i+1 + e4i+2 + e4i+3 and z∗i = 1

2 (e∗2i − e∗2i+1), where
the e∗i ’s are biorthogonal to the ei’s. For each n ≥ 2, let βn = 1

2n

∑
i∈σn z

∗
i ⊗ zi.

Finally, let Z be the closed span of the zi’s. The claim is that there exist partitions
(∆n)n such that Z fails the OAP. We prove this by checking the three conditions
of Enflo’s criterion. The first one is trivial. The second one follows easily. We
estimate the cb-norm of βn through the cb-norm of β̃n, which has the same matrix
representation as βn but is defined on Rp, the row of Sp.

We use Szankowski’s partitions of Lemma 2 to check the third condition of
Enflo’s criterion for 1 ≤ p < 2. Recall that βn − βn−1 = 1

2n+1

∑
j∈σn+1

e∗j ⊗ yj =
1

2n+1

∑
A∈∇n+1

[∑
j∈A e

∗
j ⊗ yj

]
, where yj =

∑9
k=1 λj,kefk(j) ∈ Z for some |λj,k| = 1

or 2. Let A ∈ ∇n+1. It follows from Lemma 2 (2) that XA = span{ei : i ∈ A} is
completely isomorphic to RAp . And if Ψ : RAp + CAp → Z is defined by Ψ(δj) = yj,
it follows from Lemma 2 (3) that ‖Ψ‖cb ≤ 18. Note that∑

j∈A
e∗j ⊗ yj =

∑
j∈A

e∗j ⊗Ψ(δj) = (I ⊗Ψ)
∑
j∈A

e∗j ⊗ δj ,

and that
∑

j∈A e
∗
j ⊗ δj is the “formal” identity map on (RAp )∗⊗̂(RAp + CAp ). Then

it follows from (3) that∥∥∥∥∑
j∈A

e∗j ⊗ yj
∥∥∥∥
Z∗⊗̂Z

≤ ‖Ψ‖cb
∥∥∥∥∑
j∈A

e∗j ⊗ δj
∥∥∥∥

(RAp )∗⊗̂(RAp +CAp )

≤ 18
(
card(A)

) 1
r′ ,

where 1
r + 1

r′ = 1 and 1
r = | 1p−

1
2 |. Now, we easily check

∑
n ‖βn−βn−1‖Z∗⊗̂Z <∞.

To prove the third condition of Enflo’s criterion for p > 2, we consider the
variation of Lemma 2 described in [LT], page 111. Namely, we find partitions ∆n,
∇n such that every A ∈ ∇n is contained in some element of ∆n while, for every
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A ∈ ∇n, k = 1, . . . , 9, and B in ∆n−1,∆n, or ∆n+1, card(B ∩ fk(A)) ≤ 1. Then, if
A ∈ ∇n+1, XA is completely isomorphic to RAp ∩CAp , and if Ψ : RAp → Z is defined
by Ψ(δj) = yj , then ‖Ψ‖cb ≤ 18. Since

∑
j∈A e

∗
j ⊗ δj is the “formal” identity map

on (RAp ∩CAp )∗⊗̂RAp , it follows from (4) that ‖
∑
j∈A e

∗
j⊗yj‖Z∗⊗̂Z ≤ 18

(
card(A)

) 1
r′ ,

and the third condition of Enflo’s criterion follows.
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