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TOROIDAL SURGERIES ON HYPERBOLIC KNOTS

MASAKAZU TERAGAITO

(Communicated by Ronald A. Fintushel)

Abstract. For a hyperbolic knot K in S3, a toroidal surgery is Dehn surgery
which yields a 3-manifold containing an incompressible torus. It is known
that a toroidal surgery on K is an integer or a half-integer. In this paper,
we prove that all integers occur among the toroidal slopes of hyperbolic knots
with bridge index at most three and tunnel number one.

1. Introduction

Let K be a knot in the 3-sphere S3, and let E(K) = S3−IntN(K) be its exterior.
A slope on ∂E(K) is the isotopy class of an essential unoriented simple loop. As
usual [11], the set of slopes on ∂E(K) is parameterized by Q ∪ {∞} so that 1/0 is
the meridian slope and 0/1 is the longitude slope. For a slope r on ∂E(K), K(r)
denotes the closed orientable 3-manifold obtained by r-Dehn surgery on K. Thus
K(r) = E(K) ∪ V , where V is a solid torus glued to E(K) along their boundaries
in such a way that r bounds a disk in V .

Now suppose thatK is a hyperbolic knot, i.e. the interior of E(K) has a complete
hyperbolic structure. If K(r) is not hyperbolic, the surgery and the slope r are
said to be exceptional. By the hyperbolic Dehn surgery theorem [12], K has only
finitely many exceptional surgeries. A closed 3-manifold is toroidal if it contains an
incompressible torus. If K(r) is toroidal, the surgery is said to be toroidal. Clearly,
a toroidal surgery is exceptional.

There are some results on toroidal surgeries on hyperbolic knots. Gordon and
Luecke [8] showed that if K(m/n) is toroidal, then |n| ≤ 2. Hence a toroidal slope
on a hyperbolic knot is either an integer or a half-integer. For hyperbolic alternating
knots, toroidal slopes are integers divisible by four [1] (see also [10]). In this paper,
we show that all integers can occur among the toroidal slopes of hyperbolic knots.

Theorem 1.1. For any integer r, there exists a hyperbolic knot K in S3 such that
K(r) is toroidal. Furthermore, K has bridge index at most three and tunnel number
one.
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2. Doubly Seifert-fibered knots

In this section, we will describe a construction of knots in S3 that have toroidal
surgeries done by Dean [4].

Let H be a standardly embedded handlebody of genus two in S3. Then H ′ =
S3 − IntH is also a handlebody of genus two. Let F = ∂H = ∂H ′. If a knot K
is embedded in F , then ∂N(K) ∩ F defines a slope on ∂E(K), which is called the
surface slope of K with respect to F . Note that a surface slope is always integral.

Lemma 2.1. Let K be a knot in F , and let r be the surface slope of K with respect
to F . Assume that K is non-separating in F . Then K(r) ∼= W ∪W ′, where W
(W ′) is obtained from H (H ′ resp.) by attaching a 2-handle along K, and they are
glued along their boundaries ∂W and ∂W ′, which are tori.

Proof. This is a special case of [4, Lemma 2.1.1]. Let c1 and c2 be the curves
F ∩ ∂N(K). Then ci bounds a meridian disk Di of the attached solid torus V in
K(r) for i = 1, 2. Let F̂ = (F − N(K)) ∪ D1 ∪ D2. Since K is non-separating
in F , F̂ is a torus. We split K(r) along F̂ into W and W ′. Then W and W ′ are
homeomorphic to the described ones.

For non-zero integers m and n, let Gm,n denote the group 〈x, y | xmyn = 1〉. An
element in a free group is primitive if it is a part of a basis. An element w in the
free group 〈x, y〉 is (m,n) Seifert-fibered if 〈x, y | w = 1〉 ∼= Gm,n. If |m| = 1 or
|n| = 1, then Gm,n ∼= Z.

If a knot K in F represents a Seifert-fibered element of π1(H), then we say that
K is Seifert-fibered with respect to H . In particular, if K represents a primitive
element of π1(H), then K is said to be primitive with respect to H . Also, if K is
Seifert-fibered with respect to both of H and H ′, then it is said to be doubly Seifert-
fibered with respect to F . Note that the abelianization of Gm,n is Z⊕Z(m,n), where
(m,n) is the greatest common divisor of m and n. Therefore if K is Seifert-fibered
with respect to H , say, then K is non-separating on F = ∂H .

Lemma 2.2. If a knot K on ∂H is (m,n) Seifert-fibered with respect to H for
|m|, |n| ≥ 2, then the manifold W obtained by adding a 2-handle to H along K is
a Seifert fibered manifold with incompressible boundary.

Proof. Note that W has Heegaard genus two. By additivity of Heegaard genus (see
[3]), W is irreducible, since π1(W ) = Gm,n. Hence W is Haken. Then W is a Seifert
fibered manifold by [13], since Gm,n has a nontrivial center. The last part follows
from the fact that the only Seifert fibered manifold with non-empty compressible
boundary is a solid torus. See also [4, Lemma 2.2.1].

Lemma 2.3. Let K be a doubly Seifert-fibered knot in F with surface slope r. Then
K(r) is toroidal.

Proof. This immediately follows from Lemmas 2.1 and 2.2.

3. Proof of Theorem 1.1

Let r be an integer. If r is a toroidal surgery on a knot K, then −r is one on
the mirror image of K. Therefore we may assume that r ≥ 0.
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Figure 1. K(4k + 3, 3, 2, n)

We will divide the proof into three cases.

Case 1. r ≡ 0 (mod 4).

Let K(b1, b2) be the 2-bridge knot corresponding to a continued fraction [b1, b2].
Then K(2,−2) is the figure-eight knot, and 0 and 4 are toroidal surgeries [12]. If
r ≥ 8, K(3, r/2) is hyperbolic, and r gives a toroidal surgery [2, Theorem 1.1(2)].
Note that any 2-bridge knot has tunnel number one.

Case 2. r ≡ ±1 (mod 4).

Let k ≥ 1, k 6≡ 0 (mod 3) and n ≤ −2. Let K(4k + 3, 3, 2, n) be the twisted
torus knot lying on H . It is obtained from the torus knot of type (4k + 3, 3) by
adding n-full twists on two strands that are parallel in the standard torus knot
picture [4]. See Figure 1, where the two ends are glued to form H . We see that the
surface slope with respect to ∂H is 3(4k + 3) + 4n. As a knot in S3, it is isotopic
to K(3, 4k + 3, 2, n), and hence it has bridge index at most three. Also, it is clear
that the arc γ shown in Figure 1 is an unknotting tunnel.

Let {x, y} and {a, b} be the bases of π1(H) and π1(H ′), respectively, as in Figure
1. The following two lemmas are checked straightforwardly.

Lemma 3.1. In π1(H),

K(4k + 3, 3, 2, n) represents

{
x

8k+7
3 yx

4k+2
3 y if k ≡ 1 (mod 3),

x
8k+5

3 yx
4k+4

3 y if k ≡ 2 (mod 3).

Lemma 3.2. In π1(H ′), K(4k + 3, 3, 2, n) represents a2b−nab−n.

Lemma 3.3. With respect to H,

K(4k + 3, 3, 2, n) is
{

(4k+5
3 , 2) Seifert-fibered if k ≡ 1 (mod 3),

(4k+1
3 , 2) Seifert-fibered if k ≡ 2 (mod 3).

Proof. We prove the case where k ≡ 1 (mod 3). The other case is similar.

〈x, y | x 8k+7
3 yx

4k+2
3 y = 1〉 = 〈x, y | x 4k+5

3 (x
4k+2

3 y)2 = 1〉
= 〈x, y, z | x 4k+5

3 z2 = 1, z = x
4k+2

3 y〉
= 〈x, z | x 4k+5

3 z2 = 1〉.
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Figure 2. K(4k + 6, 3, 2, n)

Lemma 3.4. K(4k + 3, 3, 2, n) is (3, n) Seifert-fibered with respect to H ′.

Proof.

〈a, b | a2b−nab−n = 1〉 = 〈a, b | a(ab−n)2 = 1〉
= 〈a, b, c | ac2 = 1, c = ab−n〉
= 〈b, c | cbnc2 = 1〉
= 〈b, c | c3bn = 1〉.

Proposition 3.5. For K(4k+3, 3, 2, n), the surface slope 3(4k+3)+4n with respect
to F is toroidal. Therefore the knot is hyperbolic.

Proof. The knot K(4k+ 3, 3, 2, n) is doubly Seifert-fibered by Lemmas 3.3 and 3.4.
Hence the surface slope is toroidal by Lemma 2.3. Since it has bridge index at
most three, it is either a torus knot or a hyperbolic knot. But a torus knot has
no non-zero toroidal surgery. (In fact, 0-surgery on the trefoil is the only toroidal
surgery for torus knots. See [9].) Thus the knot is hyperbolic.

For a given integer r > 0 such that r ≡ 1 (mod 4), we choose k so that r ≤
12k+ 1, k 6≡ 0 (mod 3). Then the knot K(4k + 3, 3, 2, n), n = −2− (12k+1)−r

4 , has
the surface slope r exactly. If r ≡ −1 (mod 4), then consider the knot K(7, 3, 2, n)
with n = −6 + 3−r

4 . Then it has the surface slope −r. Hence its mirror image is a
desired one.

As stated before, if a hyperbolic 2-bridge knot has a toroidal slope, then the
slope is an integer divisible by 4 [1]. Therefore our knots are 3-bridge.

Case 3. r ≡ 2 (mod 4).

Let k ≥ 1, k 6≡ 0 (mod 3) and n ≤ −2. Let K(4k+6, 3, 2, n) be the twisted torus
knot lying on H . See Figure 2. We see that the surface slope with respect to ∂H
is 3(4k + 6) + 4n.

As in Case 2, the knot has bridge index at most three, and tunnel number one.
We use the same bases of π1(H) and π1(H ′) as in Case 1.

The following two lemmas are checked straightforwardly.
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Lemma 3.6. In π1(H),

K(4k + 6, 3, 2, n) represents

{
x

8k+13
3 yx

4k+5
3 y if k ≡ 1 (mod 3),

x
8k+11

3 yx
4k+7

3 y if k ≡ 2 (mod 3).

Lemma 3.7. In π1(H ′), K(4k + 6, 3, 2, n) represents a2b−nab−n.

The next lemmas are proved by the same way as in the proofs of Lemmas 3.3
and 3.4.

Lemma 3.8. With respect to H,

K(4k + 6, 3, 2, n) is
{

(4k+8
3 , 2) Seifert-fibered if k ≡ 1 (mod 3),

(4k+4
3 , 2) Seifert-fibered if k ≡ 2 (mod 3).

Lemma 3.9. K(4k + 6, 3, 2, n) is (3, n) Seifert-fibered with respect to H ′.

Proposition 3.10. For K(4k + 6, 3, 2, n), the surface slope 3(4k + 6) + 4n with
respect to F is toroidal. Therefore the knot is hyperbolic.

Proof. The arguments in the proof of Proposition 3.5 work well.

For a given integer r > 0 such that r ≡ 2 (mod 4), we choose k so that r ≤
12k + 10, k 6≡ 0 (mod 3). Then the knot K(4k + 6, 3, 2, n), n = −2 − (12k+10)−r

4 ,
has the surface slope r. As in Case 2, the knot is 3-bridge.

Thus we have proved Theorem 1.1.

Remark 3.11. Eudave-Muñoz [5] gave infinitely many hyperbolic knots with half-
integer toroidal surgeries. For example, the (−2, 3, 7)-pretzel knot has a toroidal
slope 37/2. Among his knots, k(l,m, n, 0) (in his notation) has a non-integral
toroidal slope

−1
2
− l + l2m+ 2lm− 2l2m2 + (2lm− 1)2n.

Indeed, k(3, 1, 1, 0) is the (−2, 3, 7)-pretzel knot. Also, k(l,m, 0, p) has a non-
integral toroidal slope

−1
2
− l + l2m+ 2lm− 2l2m2 + (2lm− 1− l)2p.

See also [6, Propositions 5.3, 5.4]. Since his knots are expected to give all hyperbolic
knots with non-integral toroidal surgeries [7], it seems to be reasonable to conjecture
that not all n/2 can be realized as toroidal slopes of hyperbolic knots. In fact, we
may conjecture that |n/2| ≥ 37/2.
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