Positive eigenvalues of second order boundary value problems and a theorem of M. G. Krein
HTML articles powered by AMS MathViewer
- by Steve Clark and Don Hinton
- Proc. Amer. Math. Soc. 130 (2002), 3005-3015
- DOI: https://doi.org/10.1090/S0002-9939-02-06392-X
- Published electronically: March 15, 2002
- PDF | Request permission
Abstract:
Conditions are given which guarantee that the least real eigenvalue is positive for certain boundary value problems for the vector-matrix equation $-y^{\prime \prime }+p(x)y=\gamma w(x)y$. This leads to conditions which guarantee the stable boundedness, according to Krein, for solutions of $y^{\prime \prime }+\lambda p(x)y=0$ with certain real values of $\lambda$. As a consequence, a result first stated by Krein is proven.References
- Ravi P. Agarwal and Peter Y. H. Pang, Opial inequalities with applications in differential and difference equations, Mathematics and its Applications, vol. 320, Kluwer Academic Publishers, Dordrecht, 1995. MR 1340422, DOI 10.1007/978-94-015-8426-5
- Calvin D. Ahlbrandt and Allan C. Peterson, Discrete Hamiltonian systems, Kluwer Texts in the Mathematical Sciences, vol. 16, Kluwer Academic Publishers Group, Dordrecht, 1996. Difference equations, continued fractions, and Riccati equations. MR 1423802, DOI 10.1007/978-1-4757-2467-7
- Mark S. Ashbaugh and Rafael D. Benguria, Eigenvalue ratios for Sturm-Liouville operators, J. Differential Equations 103 (1993), no. 1, 205–219. MR 1218744, DOI 10.1006/jdeq.1993.1047
- Catherine Bandle, Extremal problems for eigenvalues of the Sturm-Liouville type, General inequalities, 5 (Oberwolfach, 1986) Internat. Schriftenreihe Numer. Math., vol. 80, Birkhäuser, Basel, 1987, pp. 319–336. MR 1018157, DOI 10.1007/978-3-0348-7192-1_{2}6
- C. Bennewitz and E. J. M. Veling, Optimal bounds for the spectrum of a one-dimensional Schrödinger operator, General inequalities, 6 (Oberwolfach, 1990) Internat. Ser. Numer. Math., vol. 103, Birkhäuser, Basel, 1992, pp. 257–268. MR 1213012, DOI 10.1007/978-3-0348-7565-3_{2}2
- R. C. Brown, D. B. Hinton, and Š. Schwabik, Applications of a one-dimensional Sobolev inequality to eigenvalue problems, Differential Integral Equations 9 (1996), no. 3, 481–498. MR 1371703
- R. C. Brown, private communication, September, 2000.
- Richard C. Brown, A. M. Fink, and Don B. Hinton, Some Opial, Lyapunov, and De la Valée Poussin inequalities with nonhomogeneous boundary conditions, J. Inequal. Appl. 5 (2000), no. 1, 11–37. MR 1740210, DOI 10.1155/S1025583400000023
- Steve Clark and Don Hinton, A Liapunov inequality for linear Hamiltonian systems, Math. Inequal. Appl. 1 (1998), no. 2, 201–209. MR 1613448, DOI 10.7153/mia-01-18
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785, DOI 10.1007/BFb0058618
- E. B. Davies, A hierarchical method for obtaining eigenvalue enclosures, Math. Comp. 69 (2000), no. 232, 1435–1455. MR 1710648, DOI 10.1090/S0025-5718-00-01238-2
- M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edinburgh, 1973.
- F. Gesztesy, G. M. Graf, and B. Simon, The ground state energy of Schrödinger operators, Comm. Math. Phys. 150 (1992), no. 2, 375–384. MR 1194022, DOI 10.1007/BF02096665
- Philip Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, Mass., 1982. MR 658490
- M. G. Krein, On tests for stable boundedness of solutions of periodic canonical systems, Amer. Math. Soc. Transl. Ser. (2), 120 (1983), 71–110.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Inequalities involving functions and their integrals and derivatives, Mathematics and its Applications (East European Series), vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1991. MR 1190927, DOI 10.1007/978-94-011-3562-7
- Michael Plum, Eigenvalue inclusions for second-order ordinary differential operators by a numerical homotopy method, Z. Angew. Math. Phys. 41 (1990), no. 2, 205–226. MR 1045812, DOI 10.1007/BF00945108
- John D. Pryce, Numerical solution of Sturm-Liouville problems, Monographs on Numerical Analysis, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1283388
- William T. Reid, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0273082
- William T. Reid, Sturmian theory for ordinary differential equations, Applied Mathematical Sciences, vol. 31, Springer-Verlag, New York-Berlin, 1980. With a preface by John Burns. MR 606199, DOI 10.1007/978-1-4612-6110-0
Bibliographic Information
- Steve Clark
- Affiliation: Department of Mathematics, University of Missouri-Rolla, Rolla, Missouri 65409
- Email: sclark@umr.edu
- Don Hinton
- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996
- Email: hinton@math.utk.edu
- Received by editor(s): September 8, 2000
- Received by editor(s) in revised form: May 14, 2001
- Published electronically: March 15, 2002
- Communicated by: Carmen Chicone
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 3005-3015
- MSC (2000): Primary 34C10, 34L15; Secondary 34B24, 34D10
- DOI: https://doi.org/10.1090/S0002-9939-02-06392-X
- MathSciNet review: 1908924