Approximation of convex bodies by axially symmetric bodies
HTML articles powered by AMS MathViewer
- by Marek Lassak
- Proc. Amer. Math. Soc. 130 (2002), 3075-3084
- DOI: https://doi.org/10.1090/S0002-9939-02-06404-3
- Published electronically: March 14, 2002
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 131 (2003), 2301-2301.
Abstract:
Let $C$ be an arbitrary planar convex body. We prove that $C$ contains an axially symmetric convex body of area at least $\frac {2}{3}|C|$. Also approximation by some specific axially symmetric bodies is considered. In particular, we can inscribe a rhombus of area at least $\frac {1}{2}|C|$ in $C$, and we can circumscribe a homothetic rhombus of area at most $2|C|$ about $C$. The homothety ratio is at most $2$. Those factors $\frac {1}{2}$ and $2$, as well as the ratio $2$, cannot be improved.References
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Andrzej B. Buda and Kurt Mislow, On a measure of axiality for triangular domains, Elem. Math. 46 (1991), no. 3, 65–73. MR 1113766
- G. D. Chakerian and S. K. Stein, On measures of symmetry of convex bodies, Canadian J. Math. 17 (1965), 497–504. MR 177349, DOI 10.4153/CJM-1965-049-3
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- B. Abel de Valcourt, Measures of axial symmetry for ovals, Bull. Amer. Math. Soc. 72 (1966), 289–290. MR 187142, DOI 10.1090/S0002-9904-1966-11495-7
- B. Abel de Valcourt, Measures of axial symmetry for ovals, Israel J. Math. 4 (1966), 65–82. MR 203589, DOI 10.1007/BF02937452
- B. Abel de Valcourt, Axially symmetric polygons inscribed in and circumscribed about convex sets, Elem. Math. 22 (1967), 121–133. MR 226504
- Morgan Ward, Note on the general rational solution of the equation $ax^2-by^2=z^3$, Amer. J. Math. 61 (1939), 788–790. MR 23, DOI 10.2307/2371337
- A. Emch, Some properties of closed convex curves in a plane, Amer. J. Math. 35 (1913), 407-412.
- Rudolf Fleischer, Kurt Mehlhorn, Günter Rote, Emo Welzl, and Chee Yap, Simultaneous inner and outer approximation of shapes, Algorithmica 8 (1992), no. 5-6, 365–389. 1990 Computational Geometry Symposium (Berkeley, CA, 1990). MR 1195158, DOI 10.1007/BF01758852
- W. Gross, Über affine Geometrie XIII: Eine Minimumeigenschaft der Ellipse und des Elipsoids, Ber. Ver. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl. 70 (1918), 38-54.
- Branko Grünbaum, Measures of symmetry for convex sets, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 233–270. MR 0156259
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- F. Krakowski, Bemerkung zur einer Arbeit von W. Nohl, Elem. Math. 18 (1963), 60-61.
- Marek Lassak, Approximation of convex bodies by triangles, Proc. Amer. Math. Soc. 115 (1992), no. 1, 207–210. MR 1057956, DOI 10.1090/S0002-9939-1992-1057956-1
- Marek Lassak, Approximation of convex bodies by rectangles, Geom. Dedicata 47 (1993), no. 1, 111–117. MR 1230108, DOI 10.1007/BF01263495
- W. Nohl, Die innere axiale Symmetrie zentrischer Eibereiche der euklidischen Ebene, Elem. Math. 17 (1962), 59-63.
- Otfried Schwarzkopf, Ulrich Fuchs, Günter Rote, and Emo Welzl, Approximation of convex figures by pairs of rectangles, STACS 90 (Rouen, 1990) Lecture Notes in Comput. Sci., vol. 415, Springer, Berlin, 1990, pp. 240–249. MR 1063318, DOI 10.1007/3-540-52282-4_{4}7
- Otfried Schwarzkopf, Ulrich Fuchs, Günter Rote, and Emo Welzl, Approximation of convex figures by pairs of rectangles, Comput. Geom. 10 (1998), no. 2, 77–87. MR 1614621, DOI 10.1016/S0925-7721(96)00019-3
- K. Zindler, Über konvexe Gebilde II, Monatsh. Math. 31 (1921), 25-56.
Bibliographic Information
- Marek Lassak
- Affiliation: Instytut Matematyki i Fizyki ATR, 85-796 Bydgoszcz, Poland
- Address at time of publication: Institut für Informatik, FU Berlin, D-14195, Berlin, Germany
- Email: lassak@mail.atr.bydgoszcz.pl
- Received by editor(s): March 1, 2000
- Received by editor(s) in revised form: May 1, 2001
- Published electronically: March 14, 2002
- Additional Notes: This research was supported by Deutsche Forschungsgemeinschaft
- Communicated by: Wolfgang Ziller
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 3075-3084
- MSC (1991): Primary 52A10, 52A27
- DOI: https://doi.org/10.1090/S0002-9939-02-06404-3
- MathSciNet review: 1908932