Positive solutions of a logistic equation on unbounded intervals
HTML articles powered by AMS MathViewer
- by Li Ma and Xingwang Xu
- Proc. Amer. Math. Soc. 130 (2002), 2947-2958
- DOI: https://doi.org/10.1090/S0002-9939-02-06405-5
- Published electronically: April 22, 2002
- PDF | Request permission
Abstract:
In this paper, we study the existence of positive solutions of a one-parameter family of logistic equations on $R_+$ or on $R$. These equations are stationary versions of the Fisher equations and the KPP equations. We also study the blow-up region of a sequence of the solutions when the parameter approaches a critical value and the non-existence of positive solutions beyond the critical value. We use the direct method and the sub and super solution method.References
- Giuseppe Buttazzo, Mariano Giaquinta, and Stefan Hildebrandt, One-dimensional variational problems, Oxford Lecture Series in Mathematics and its Applications, vol. 15, The Clarendon Press, Oxford University Press, New York, 1998. An introduction. MR 1694383
- Zhiren Jin, Principal eigenvalues with indefinite weight functions, Trans. Amer. Math. Soc. 349 (1997), no. 5, 1945–1959. MR 1389781, DOI 10.1090/S0002-9947-97-01797-2
- J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs, J. Differential Equations 148 (1998), no. 1, 47–64. MR 1637517, DOI 10.1006/jdeq.1998.3456
- K. J. Brown, C. Cosner, and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on $\textbf {R}^n$, Proc. Amer. Math. Soc. 109 (1990), no. 1, 147–155. MR 1007489, DOI 10.1090/S0002-9939-1990-1007489-1
- W. Allegretto, Principal eigenvalues for indefinite-weight elliptic problems in $\textbf {R}^n$, Proc. Amer. Math. Soc. 116 (1992), no. 3, 701–706. MR 1098396, DOI 10.1090/S0002-9939-1992-1098396-9
- Jerry L. Kazdan and F. W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry 10 (1975), 113–134. MR 365409
- Tiancheng Ouyang, On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^p=0$ on the compact manifolds, Trans. Amer. Math. Soc. 331 (1992), no. 2, 503–527. MR 1055810, DOI 10.1090/S0002-9947-1992-1055810-7
- Manuel A. del Pino, Positive solutions of a semilinear elliptic equation on a compact manifold, Nonlinear Anal. 22 (1994), no. 11, 1423–1430. MR 1280207, DOI 10.1016/0362-546X(94)90121-X
- Allan L. Edelson and Adolfo J. Rumbos, Linear and semilinear eigenvalue problems in $\textbf {R}^n$, Comm. Partial Differential Equations 18 (1993), no. 1-2, 215–240. MR 1211732, DOI 10.1080/03605309308820928
- Yihong Du and Qingguang Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal. 31 (1999), no. 1, 1–18. MR 1720128, DOI 10.1137/S0036141099352844
- Li Ma, Conformal deformations on a noncompact Riemannian manifold, Math. Ann. 295 (1993), no. 1, 75–80. MR 1198842, DOI 10.1007/BF01444877
- Peter Li, Luen-Fai Tam, and DaGang Yang, On the elliptic equation $\Delta u+ku-Ku^p=0$ on complete Riemannian manifolds and their geometric applications, Trans. Amer. Math. Soc. 350 (1998), no. 3, 1045–1078. MR 1407497, DOI 10.1090/S0002-9947-98-01886-8
- Wei Ming Ni, On the elliptic equation $\Delta u+K(x)u^{(n+2)/(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493–529. MR 662915, DOI 10.1512/iumj.1982.31.31040
- Patricio Aviles and Robert C. McOwen, Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds, J. Differential Geom. 27 (1988), no. 2, 225–239. MR 925121
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443, DOI 10.1007/978-3-642-96379-7
- Fang-Hua Lin, On the elliptic equation $D_i[a_{ij}(x)D_jU]-k(x)U+K(x)U^p=0$, Proc. Amer. Math. Soc. 95 (1985), no. 2, 219–226. MR 801327, DOI 10.1090/S0002-9939-1985-0801327-3
- M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 14 (1997), no. 2, 237–274 (English, with English and French summaries). MR 1441394, DOI 10.1016/S0294-1449(97)80146-1
- Y.H.Du and L. Ma, Positive solutions of an elliptic partial differential equation on $R^n$, preprint, 2000.
- Y.H.Du and L.Ma, Logistic type equations on $R^n$ by a squeezing method involving boundary blow-up solutions, Journal of London Mathematical Society, 64(2001)107-124.
- G. A. Afrouzi and K. J. Brown, On a diffusive logistic equation, J. Math. Anal. Appl. 225 (1998), no. 1, 326–339. MR 1639260, DOI 10.1006/jmaa.1998.6044
- E.N.Dancer and S.P.Hasting, On the global bifurcation diagram for the one dimensional Ginzburg-Landau model of superconductivity, European J. Applied Math., 11(2000)271-291.
Bibliographic Information
- Li Ma
- Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- MR Author ID: 293769
- Email: lma@math.tsinghua.edu.cn
- Xingwang Xu
- Affiliation: Department of Mathematics, The National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
- Email: matxuxw@math.nus.edu.sg
- Received by editor(s): October 9, 2000
- Received by editor(s) in revised form: May 3, 2001
- Published electronically: April 22, 2002
- Additional Notes: The work of the first author was partially supported by the 973 project of China, a grant from the Ministry of Education, and a scientific grant of Tsinghua University at Beijing. The authors thank the referee for helpful corrections.
- Communicated by: Carmen C. Chicone
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 2947-2958
- MSC (1991): Primary 34B09, 35J65
- DOI: https://doi.org/10.1090/S0002-9939-02-06405-5
- MathSciNet review: 1908918