## On wavelets interpolated from a pair of wavelet sets

HTML articles powered by AMS MathViewer

- by Ziemowit Rzeszotnik and Darrin Speegle PDF
- Proc. Amer. Math. Soc.
**130**(2002), 2921-2930 Request permission

## Abstract:

We show that any wavelet, with the support of its Fourier transform small enough, can be interpolated from a pair of wavelet sets. In particular, the support of the Fourier transform of such wavelets must contain a wavelet set, answering a special case of an open problem of Larson. The interpolation procedure, which was introduced by X. Dai and D. Larson, allows us also to prove the extension property.## References

- Bownik, M.,
*On Characterizations of multiwavelets in $L^{2}(\mathbb {R} ^{n})$*, Proc. Amer. Math. Soc.**129**(2001), 3263–3274. - Baggett, L., Courter, J. and Merrill, K.,
*The construction of wavelets from generalized conjugate mirror filters in $L^{2}(\mathbb {R} ^{n})$*, preprint. - Luca Brandolini, Gustavo Garrigós, Ziemowit Rzeszotnik, and Guido Weiss,
*The behaviour at the origin of a class of band-limited wavelets*, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999) Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 75–91. MR**1738086**, DOI 10.1090/conm/247/03798 - Lawrence W. Baggett, Herbert A. Medina, and Kathy D. Merrill,
*Generalized multi-resolution analyses and a construction procedure for all wavelet sets in $\mathbf R^n$*, J. Fourier Anal. Appl.**5**(1999), no. 6, 563–573. MR**1752590**, DOI 10.1007/BF01257191 - Aline Bonami, Fernando Soria, and Guido Weiss,
*Band-limited wavelets*, J. Geom. Anal.**3**(1993), no. 6, 543–578. MR**1248085**, DOI 10.1007/BF02921322 - Xingde Dai and David R. Larson,
*Wandering vectors for unitary systems and orthogonal wavelets*, Mem. Amer. Math. Soc.**134**(1998), no. 640, viii+68. MR**1432142**, DOI 10.1090/memo/0640 - Xingde Dai, David R. Larson, and Darrin M. Speegle,
*Wavelet sets in $\mathbf R^n$. II*, Wavelets, multiwavelets, and their applications (San Diego, CA, 1997) Contemp. Math., vol. 216, Amer. Math. Soc., Providence, RI, 1998, pp. 15–40. MR**1614712**, DOI 10.1090/conm/216/02962 - Gustaf Gripenberg,
*A necessary and sufficient condition for the existence of a father wavelet*, Studia Math.**114**(1995), no. 3, 207–226. MR**1338828**, DOI 10.4064/sm-114-3-207-226 - Qing Gu,
*On interpolation families of wavelet sets*, Proc. Amer. Math. Soc.**128**(2000), no. 10, 2973–2979. MR**1670371**, DOI 10.1090/S0002-9939-00-05380-6 - Young-Hwa Ha, Hyeonbae Kang, Jungseob Lee, and Jin Keun Seo,
*Unimodular wavelets for $L^2$ and the Hardy space $H^2$*, Michigan Math. J.**41**(1994), no. 2, 345–361. MR**1278440**, DOI 10.1307/mmj/1029005001 - Eugenio Hernández and Guido Weiss,
*A first course on wavelets*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996. With a foreword by Yves Meyer. MR**1408902**, DOI 10.1201/9781420049985 - Eugenio Hernández, Xihua Wang, and Guido Weiss,
*Smoothing minimally supported frequency wavelets. I*, J. Fourier Anal. Appl.**2**(1996), no. 4, 329–340. MR**1395768** - Eugen J. Ionascu and Carl M. Pearcy,
*On subwavelet sets*, Proc. Amer. Math. Soc.**126**(1998), no. 12, 3549–3552. MR**1476138**, DOI 10.1090/S0002-9939-98-04676-0 - D. R. Larson,
*Von Neumann algebras and wavelets*, Operator algebras and applications (Samos, 1996) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 495, Kluwer Acad. Publ., Dordrecht, 1997, pp. 267–312. MR**1462685** - Pierre Gilles Lemarié,
*Ondelettes à localisation exponentielle*, J. Math. Pures Appl. (9)**67**(1988), no. 3, 227–236 (French, with English summary). MR**964171** - Weiss G. and Wilson E.N.,
*The Mathematical Theory of Wavelets*, preprint.

## Additional Information

**Ziemowit Rzeszotnik**- Affiliation: Institute of Mathematics, University of Wroclaw, pl Grunwaldzki 2/4, 50-384 Wroclaw, Poland
- Email: zioma@math.uni.wroc.pl
**Darrin Speegle**- Affiliation: Department of Mathematics & Computer Science, Saint Louis University, St. Louis, Missouri 63103
- Email: speegled@slu.edu
- Received by editor(s): September 19, 2000
- Received by editor(s) in revised form: March 22, 2001
- Published electronically: May 8, 2002
- Communicated by: David R. Larson
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**130**(2002), 2921-2930 - MSC (2000): Primary 42C40
- DOI: https://doi.org/10.1090/S0002-9939-02-06416-X
- MathSciNet review: 1908915