Triples of arrangements and local systems
HTML articles powered by AMS MathViewer
- by Daniel C. Cohen
- Proc. Amer. Math. Soc. 130 (2002), 3025-3031
- DOI: https://doi.org/10.1090/S0002-9939-02-06428-6
- Published electronically: March 15, 2002
- PDF | Request permission
Abstract:
For a triple of complex hyperplane arrangements, there is a well-known long exact sequence relating the cohomology of the complements. We observe that this result extends to certain local coefficient systems, and use this extension to study the characteristic varieties of arrangements. We show that the first characteristic variety may contain components that are translated by characters of any order, thereby answering a question of A. Suciu.References
- K. Aomoto, M. Kita, Hypergeometric Functions (in Japanese), Springer-Verlag, 1994.
- Donu Arapura, Geometry of cohomology support loci for local systems. I, J. Algebraic Geom. 6 (1997), no. 3, 563–597. MR 1487227
- Daniel C. Cohen and Peter Orlik, Arrangements and local systems, Math. Res. Lett. 7 (2000), no. 2-3, 299–316. MR 1764324, DOI 10.4310/MRL.2000.v7.n3.a5
- Daniel C. Cohen and Alexander I. Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 1, 33–53. MR 1692519, DOI 10.1017/S0305004199003576
- Michael Falk, Arrangements and cohomology, Ann. Comb. 1 (1997), no. 2, 135–157. MR 1629681, DOI 10.1007/BF02558471
- M. Falk, Combinatorial and algebraic structures in Orlik-Solomon algebras, European J. Combin. 22 (2001), 687–698.
- I. M. Gel′fand, General theory of hypergeometric functions, Dokl. Akad. Nauk SSSR 288 (1986), no. 1, 14–18 (Russian). MR 841131
- Richard Jozsa and John Rice, On the cohomology ring of hyperplane complements, Proc. Amer. Math. Soc. 113 (1991), no. 4, 973–981. MR 1065085, DOI 10.1090/S0002-9939-1991-1065085-5
- A. Libgober, On the homology of finite abelian coverings, Topology Appl. 43 (1992), no. 2, 157–166. MR 1152316, DOI 10.1016/0166-8641(92)90137-O
- A. Libgober, Characteristic varieties of algebraic curves, in: Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), NATO Sci. Ser. II Math. Phys. Chem., 36, Kluwer Acad. Publ., Dordrecht, 2001, pp. 215–254.
- A. Libgober, First order deformations for rank one local systems with a non-vanishing cohomology, Topology Appl. 118 (2002), 159–168.
- Anatoly Libgober and Sergey Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121 (2000), no. 3, 337–361. MR 1761630, DOI 10.1023/A:1001826010964
- Daniel Matei and Alexander I. Suciu, Cohomology rings and nilpotent quotients of real and complex arrangements, Arrangements—Tokyo 1998, Adv. Stud. Pure Math., vol. 27, Kinokuniya, Tokyo, 2000, pp. 185–215. MR 1796900, DOI 10.2969/aspm/02710185
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- P. Orlik, H. Terao, Arrangements and Hypergeometric Integrals, MSJ Mem., vol. 9, Math. Soc. Japan, 2001.
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549–559 (German). MR 96, DOI 10.2307/1968939
- A. Suciu, Translated tori in the characteristic varieties of complex hyperplane arrangements, Topology Appl. 118 (2002), 209–223.
- A. Varchenko, Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Advanced Series in Mathematical Physics, vol. 21, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. MR 1384760, DOI 10.1142/2467
- S. Yuzvinsky, Orlik-Solomon algebras in algebra and topology, Russian Math. Surveys 56 (2001), 87–166.
Bibliographic Information
- Daniel C. Cohen
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- MR Author ID: 290411
- ORCID: 0000-0002-5845-2523
- Email: cohen@math.lsu.edu
- Received by editor(s): April 9, 2001
- Received by editor(s) in revised form: May 23, 2001
- Published electronically: March 15, 2002
- Additional Notes: Partially supported by Louisiana Board of Regents grant LEQSF(1999-2002)-RD-A-01 and by National Security Agency grant MDA904-00-1-0038
- Communicated by: Ronald A. Fintushel
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 3025-3031
- MSC (2000): Primary 32S22; Secondary 52C35, 55N25, 14M12
- DOI: https://doi.org/10.1090/S0002-9939-02-06428-6
- MathSciNet review: 1908926