Self-commutator inequalities in higher dimension
HTML articles powered by AMS MathViewer
- by Mircea Martin
- Proc. Amer. Math. Soc. 130 (2002), 2971-2983
- DOI: https://doi.org/10.1090/S0002-9939-02-06445-6
- Published electronically: March 12, 2002
- PDF | Request permission
Abstract:
Three natural multi-dimensional substitutes for the self-commutator of a Hilbert space operator are introduced and generalizations of Putnam’s inequality to tuples of operators with semidefinite self-commutators are indicated. In addition, a Riesz transform model is developed and investigated.References
- H. Alexander, Projections of polynomial hulls, J. Functional Analysis 13 (1973), 13–19. MR 0338444, DOI 10.1016/0022-1236(73)90063-3
- Ameer Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), no. 2, 417–423. MR 943059, DOI 10.1090/S0002-9939-1988-0943059-X
- Sheldon Axler and Joel H. Shapiro, Putnam’s theorem, Alexander’s spectral area estimate, and VMO, Math. Ann. 271 (1985), no. 2, 161–183. MR 783550, DOI 10.1007/BF01455985
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720, DOI 10.1007/978-3-642-58088-8
- F. Brackx, Richard Delanghe, and F. Sommen, Clifford analysis, Research Notes in Mathematics, vol. 76, Pitman (Advanced Publishing Program), Boston, MA, 1982. MR 697564
- Kevin Clancey, Seminormal operators, Lecture Notes in Mathematics, vol. 742, Springer, Berlin, 1979. MR 548170, DOI 10.1007/BFb0065642
- M. Cho, R. E. Curto, T. Huruya, and W. Zelazko, Cartesian form of Putnam’s inequality for doubly commuting $n$-tuples, Indiana Univ. Math. J. 49 (2000), 1437–1448.
- John B. Conway, Subnormal operators, Research Notes in Mathematics, vol. 51, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. MR 634507
- Raúl E. Curto, Joint hyponormality: a bridge between hyponormality and subnormality, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 69–91. MR 1077422, DOI 10.1090/pspum/051.2/1077422
- Raúl E. Curto and Ren Yi Jian, A matricial identity involving the self-commutator of a commuting $n$-tuple, Proc. Amer. Math. Soc. 121 (1994), no. 2, 461–464. MR 1182700, DOI 10.1090/S0002-9939-1994-1182700-9
- Raúl E. Curto, Paul S. Muhly, and Jingbo Xia, Hyponormal pairs of commuting operators, Contributions to operator theory and its applications (Mesa, AZ, 1987) Oper. Theory Adv. Appl., vol. 35, Birkhäuser, Basel, 1988, pp. 1–22. MR 1017663
- R. G. Douglas, V. Paulsen, and K. Yan, Operator theory and algebraic geometry, Bull. Amer. Math. Soc. 20 (1988), 67–71.
- John E. Gilbert and Margaret A. M. Murray, Clifford algebras and Dirac operators in harmonic analysis, Cambridge Studies in Advanced Mathematics, vol. 26, Cambridge University Press, Cambridge, 1991. MR 1130821, DOI 10.1017/CBO9780511611582
- Tosio Kato, Smooth operators and commutators, Studia Math. 31 (1968), 535–546. MR 234314, DOI 10.4064/sm-31-5-535-546
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- Mircea Martin, Joint seminormality and Dirac operators, Integral Equations Operator Theory 30 (1998), no. 1, 101–121. MR 1491805, DOI 10.1007/BF01195879
- Mircea Martin, Higher-dimensional Ahlfors-Beurling type inequalities in Clifford analysis, Proc. Amer. Math. Soc. 126 (1998), no. 10, 2863–2871. MR 1451820, DOI 10.1090/S0002-9939-98-04351-2
- Mircea Martin and Mihai Putinar, Lectures on hyponormal operators, Operator Theory: Advances and Applications, vol. 39, Birkhäuser Verlag, Basel, 1989. MR 1028066, DOI 10.1007/978-3-0348-7466-3
- Mircea Martin and Norberto Salinas, Weitzenböck type formulas and joint seminormality, Operator theory for complex and hypercomplex analysis (Mexico City, 1994) Contemp. Math., vol. 212, Amer. Math. Soc., Providence, RI, 1998, pp. 157–167. MR 1486598, DOI 10.1090/conm/212/02880
- Mircea Martin and PawełSzeptycki, Sharp inequalities for convolution operators with homogeneous kernels and applications, Indiana Univ. Math. J. 46 (1997), no. 3, 975–988. MR 1488343, DOI 10.1512/iumj.1997.46.1405
- Scott McCullough and Vern Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989), no. 1, 187–195. MR 972236, DOI 10.1090/S0002-9939-1989-0972236-8
- Alan McIntosh and Alan Pryde, A functional calculus for several commuting operators, Indiana Univ. Math. J. 36 (1987), no. 2, 421–439. MR 891783, DOI 10.1512/iumj.1987.36.36024
- Marius Mitrea, Clifford wavelets, singular integrals, and Hardy spaces, Lecture Notes in Mathematics, vol. 1575, Springer-Verlag, Berlin, 1994. MR 1295843, DOI 10.1007/BFb0073556
- Paul S. Muhly, A note on commutators and singular integrals, Proc. Amer. Math. Soc. 54 (1976), 117–121. MR 394286, DOI 10.1090/S0002-9939-1976-0394286-6
- Bent E. Petersen, Introduction to the Fourier transform & pseudodifferential operators, Monographs and Studies in Mathematics, vol. 19, Pitman (Advanced Publishing Program), Boston, MA, 1983. MR 721328
- Joel David Pincus, Commutators and systems of singular integral equations. I, Acta Math. 121 (1968), 219–249. MR 240680, DOI 10.1007/BF02391914
- Joel D. Pincus and Dao Xing Xia, Mosaic and principal function of hyponormal and semihyponormal operators, Integral Equations Operator Theory 4 (1981), no. 1, 134–150. MR 602621, DOI 10.1007/BF01682748
- Joel D. Pincus, Daoxing Xia, and Jing Bo Xia, The analytic model of a hyponormal operator with rank one self-commutator, Integral Equations Operator Theory 7 (1984), no. 4, 516–535. MR 757986, DOI 10.1007/BF01238864
- C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag New York, Inc., New York, 1967. MR 0217618, DOI 10.1007/978-3-642-85938-0
- C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323–330. MR 270193, DOI 10.1007/BF01111839
- John Ryan, Some applications of conformal covariance in Clifford analysis, Clifford algebras in analysis and related topics (Fayetteville, AR, 1993) Stud. Adv. Math., CRC, Boca Raton, FL, 1996, pp. 129–156. MR 1383103
- John Ryan, Dirac operators, conformal transformations and aspects of classical harmonic analysis, J. Lie Theory 8 (1998), no. 1, 67–82. MR 1616786
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- H. Davenport, On Waring’s problem for cubes, Acta Math. 71 (1939), 123–143. MR 26, DOI 10.1007/BF02547752
- Daoxing Xia, Spectral theory of hyponormal operators, Operator Theory: Advances and Applications, vol. 10, Birkhäuser Verlag, Basel, 1983. MR 806959, DOI 10.1007/978-3-0348-5435-1
- Daoxing Xia, On some classes of hyponormal tuples of commuting operators, Topics in operator theory: Ernst D. Hellinger memorial volume, Oper. Theory Adv. Appl., vol. 48, Birkhäuser, Basel, 1990, pp. 423–448. MR 1207411
Bibliographic Information
- Mircea Martin
- Affiliation: Department of Mathematics, Baker University, Baldwin City, Kansas 66006
- Email: mmartin@harvey.bakeru.edu
- Received by editor(s): June 27, 2000
- Received by editor(s) in revised form: May 7, 2001
- Published electronically: March 12, 2002
- Communicated by: Joseph A. Ball
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 2971-2983
- MSC (1991): Primary 47B20, 42B20
- DOI: https://doi.org/10.1090/S0002-9939-02-06445-6
- MathSciNet review: 1908920