Asymptotics of Sobolev embeddings and singular perturbations for the $p$-Laplacian
HTML articles powered by AMS MathViewer
- by Manuel del Pino and César Flores
- Proc. Amer. Math. Soc. 130 (2002), 2931-2939
- DOI: https://doi.org/10.1090/S0002-9939-02-06535-8
- Published electronically: April 10, 2002
- PDF | Request permission
Abstract:
We consider the best constant $S(\Omega _\lambda )$ for the embedding of $W^{1,p} (\Omega _\lambda )$ into $L^q(\Omega _\lambda )$ where $1<p<2$, $p<q< {Np\over N-p}$. Here $\Omega _\lambda = \lambda \Omega$ with $\Omega$ a smooth, bounded domain in $\mathbb {R}^n$ and $\lambda$ a large positive number. It is proven by the validity of the expansion \begin{equation} S( \Omega _\lambda ) = S(\mathbb {R}^n_+) - \lambda ^{-1} \gamma \max _{x\in \partial \Omega } H(x) + o ( \lambda ^{-1} ), \nonumber \end{equation} as $\lambda \to \infty$, where $\gamma$ is a positive constant depending on $p,q$ and $N$. The behavior of associated extremals, which satisfy an equation involving the $p$-Laplacian operator, is also analyzed.References
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345. MR 695535, DOI 10.1007/BF00250555
- Lucio Damascelli, Filomena Pacella, and Mythily Ramaswamy, Symmetry of ground states of $p$-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal. 148 (1999), no. 4, 291–308. MR 1716666, DOI 10.1007/s002050050163
- M. del Pino, C. Flores, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains. Comm. Partial Differential Equations, to appear.
- Manuel Del Pino and Patricio L. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (1999), no. 3, 883–898. MR 1736974, DOI 10.1512/iumj.1999.48.1596
- E. DiBenedetto, $C^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827–850. MR 709038, DOI 10.1016/0362-546X(83)90061-5
- C.-S. Lin, W.-M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), no. 1, 1–27. MR 929196, DOI 10.1016/0022-0396(88)90147-7
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145 (English, with French summary). MR 778970, DOI 10.1016/S0294-1449(16)30428-0
- Wei-Ming Ni and Izumi Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), no. 7, 819–851. MR 1115095, DOI 10.1002/cpa.3160440705
- Wei-Ming Ni and Izumi Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), no. 2, 247–281. MR 1219814, DOI 10.1215/S0012-7094-93-07004-4
- J. Serrin, M. Tang. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49 (2000), no. 3, 897-923.
- Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 727034, DOI 10.1016/0022-0396(84)90105-0
- J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202. MR 768629, DOI 10.1007/BF01449041
Bibliographic Information
- Manuel del Pino
- Affiliation: Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMR2071 CNRS-UChile), Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
- MR Author ID: 56185
- Email: delpino@dim.uchile.cl
- César Flores
- Affiliation: Departamento de Matemáticas, FCFM Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Email: cflores@dim.uchile.cl
- Received by editor(s): May 1, 2001
- Published electronically: April 10, 2002
- Additional Notes: This work was supported by grants Fondecyt Lineas Complementarias 8000010, DIUC 200.015.015-1.0, ECOS/CONICYT, and FONDAP
- Communicated by: David S. Tartakoff
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 2931-2939
- MSC (2000): Primary 35J20; Secondary 35B40
- DOI: https://doi.org/10.1090/S0002-9939-02-06535-8
- MathSciNet review: 1908916
Dedicated: To the memory of Carlos Cid