## Asymptotics of Sobolev embeddings and singular perturbations for the $p$-Laplacian

HTML articles powered by AMS MathViewer

- by Manuel del Pino and César Flores
- Proc. Amer. Math. Soc.
**130**(2002), 2931-2939 - DOI: https://doi.org/10.1090/S0002-9939-02-06535-8
- Published electronically: April 10, 2002
- PDF | Request permission

## Abstract:

We consider the best constant $S(\Omega _\lambda )$ for the embedding of $W^{1,p} (\Omega _\lambda )$ into $L^q(\Omega _\lambda )$ where $1<p<2$, $p<q< {Np\over N-p}$. Here $\Omega _\lambda = \lambda \Omega$ with $\Omega$ a smooth, bounded domain in $\mathbb {R}^n$ and $\lambda$ a large positive number. It is proven by the validity of the expansion \begin{equation} S( \Omega _\lambda ) = S(\mathbb {R}^n_+) - \lambda ^{-1} \gamma \max _{x\in \partial \Omega } H(x) + o ( \lambda ^{-1} ), \nonumber \end{equation} as $\lambda \to \infty$, where $\gamma$ is a positive constant depending on $p,q$ and $N$. The behavior of associated extremals, which satisfy an equation involving the $p$-Laplacian operator, is also analyzed.## References

- H. Berestycki and P.-L. Lions,
*Nonlinear scalar field equations. I. Existence of a ground state*, Arch. Rational Mech. Anal.**82**(1983), no. 4, 313–345. MR**695535**, DOI 10.1007/BF00250555 - Lucio Damascelli, Filomena Pacella, and Mythily Ramaswamy,
*Symmetry of ground states of $p$-Laplace equations via the moving plane method*, Arch. Ration. Mech. Anal.**148**(1999), no. 4, 291–308. MR**1716666**, DOI 10.1007/s002050050163 - M. del Pino, C. Flores, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains.
*Comm. Partial Differential Equations,*to appear. - Manuel Del Pino and Patricio L. Felmer,
*Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting*, Indiana Univ. Math. J.**48**(1999), no. 3, 883–898. MR**1736974**, DOI 10.1512/iumj.1999.48.1596 - E. DiBenedetto,
*$C^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations*, Nonlinear Anal.**7**(1983), no. 8, 827–850. MR**709038**, DOI 10.1016/0362-546X(83)90061-5 - C.-S. Lin, W.-M. Ni, and I. Takagi,
*Large amplitude stationary solutions to a chemotaxis system*, J. Differential Equations**72**(1988), no. 1, 1–27. MR**929196**, DOI 10.1016/0022-0396(88)90147-7 - P.-L. Lions,
*The concentration-compactness principle in the calculus of variations. The locally compact case. I*, Ann. Inst. H. Poincaré Anal. Non Linéaire**1**(1984), no. 2, 109–145 (English, with French summary). MR**778970**, DOI 10.1016/S0294-1449(16)30428-0 - Wei-Ming Ni and Izumi Takagi,
*On the shape of least-energy solutions to a semilinear Neumann problem*, Comm. Pure Appl. Math.**44**(1991), no. 7, 819–851. MR**1115095**, DOI 10.1002/cpa.3160440705 - Wei-Ming Ni and Izumi Takagi,
*Locating the peaks of least-energy solutions to a semilinear Neumann problem*, Duke Math. J.**70**(1993), no. 2, 247–281. MR**1219814**, DOI 10.1215/S0012-7094-93-07004-4 - J. Serrin, M. Tang. Uniqueness of ground states for quasilinear elliptic equations.
*Indiana Univ. Math. J.*49 (2000), no. 3, 897-923. - Peter Tolksdorf,
*Regularity for a more general class of quasilinear elliptic equations*, J. Differential Equations**51**(1984), no. 1, 126–150. MR**727034**, DOI 10.1016/0022-0396(84)90105-0 - J. L. Vázquez,
*A strong maximum principle for some quasilinear elliptic equations*, Appl. Math. Optim.**12**(1984), no. 3, 191–202. MR**768629**, DOI 10.1007/BF01449041

## Bibliographic Information

**Manuel del Pino**- Affiliation: Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMR2071 CNRS-UChile), Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
- MR Author ID: 56185
- Email: delpino@dim.uchile.cl
**César Flores**- Affiliation: Departamento de Matemáticas, FCFM Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Email: cflores@dim.uchile.cl
- Received by editor(s): May 1, 2001
- Published electronically: April 10, 2002
- Additional Notes: This work was supported by grants Fondecyt Lineas Complementarias 8000010, DIUC 200.015.015-1.0, ECOS/CONICYT, and FONDAP
- Communicated by: David S. Tartakoff
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**130**(2002), 2931-2939 - MSC (2000): Primary 35J20; Secondary 35B40
- DOI: https://doi.org/10.1090/S0002-9939-02-06535-8
- MathSciNet review: 1908916

Dedicated: To the memory of Carlos Cid