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LAWLESSNESS AND RANK RESTRICTIONS
IN CERTAIN FINITARY GROUPS

C. J. E. PINNOCK

(Communicated by Lance W. Small)

Abstract. We give two applications of the recent classification of locally finite
simple finitary skew linear groups. We show that certain irreducible finitary
skew linear groups of infinite dimension generate the variety of all groups and
have infinite Prüfer rank.

1. Introduction

In this note, we give an example of how the recent classification of locally finite
simple finitary skew linear groups (see [1] and [12]) can be used. We shall only
be interested in finitary skew linear groups over division rings which are locally
finite-dimensional over some subfield. These groups have a local Zariski topology,
which can be applied to pull up results from the theory of linear groups.

Throughout, D will be a division ring which is locally finite-dimensional over
some subfield F , unless stated otherwise. Let V be a left vector space over D. A
finitary skew linear group on V is a subgroup of

FGL(V ) = {g ∈ GL(V ) : dimDV (g − 1) <∞}.
A permutation group G on the set Ω is called finitary if every permutation in G

fixes all but finitely many elements of Ω.
A group G is said to be lawless if it generates the variety of all groups; that is,

if G satisfies no non-trivial law.
The group G has finite Prüfer rank r if every finitely generated subgroup of G

can be generated by r elements, and r is the least integer with this property. Of
course, if no such r exists, we say that G has infinite Prüfer rank.

P. M. Neumann ([3], Theorem 1) has proved that a transitive finitary per-
mutation group of infinite degree is lawless. For a linear group G ≤ GL(n, F ),
V. Platonov has proved that

1. G satisfies a non-trivial law if and only if G is soluble-by-finite ([10], Theorem
10.15).

2. If G has finite Prüfer rank r, then it is soluble-by-finite. If further, the
characteristic of F is p > 0, then G has an abelian normal subgroup of index
bounded in terms of n, p and r ([10], Theorem 10.9).
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We shall extend these results to finitary skew linear versions. We prove the
following:

Theorem 1. Let G be a finitary skew linear group on V .
1. The group G is either lawless or is locally-soluble by locally-finite.
2. If G is irreducible and dimDV is infinite, then G is lawless.

Theorem 2. Let G be a group of finite Prüfer rank.
1. Suppose that G is a finitary permutation group on Ω. Then G has finite orbits

on Ω.
2. Suppose that G is a finitary skew linear group on V .

(a) The group G is locally-soluble by locally-finite. If further, charD > 0,
then G is abelian by locally-finite.

(b) If G is irreducible, then dimDV is finite.

Remarks. 1. The unitriangular groupG = Tr1(3,Z) is polycyclic and thus has finite
Prüfer rank. Now G is not abelian by locally-finite, so the hypothesis of positive
characteristic in Theorem 2, Part 2(a) is required.

2. By Theorem 1, Part 2, one can remove the hypothesis “η(G) is non-trivial”
from [5], Corollary, Part 2, when considering division rings which are locally finite-
dimensional over a subfield.

2. The Zariski topology

This section extends some of the results of Puglisi [6], Section 2, to our situation.
Let G ≤ FGL(V ) and let X be a finitely generated subgroup of G. Now X is

skew linear over D, say X = 〈x1, . . . , xs〉 ≤ GL(n,D) and further, X ≤ GL(n,E)
where E is the subring of D generated by F together with the entries of the matrices
x1, . . . , xs. Then E is finite-dimensional over F , say of dimension m, and so X ≤
GL(mn,F ). Therefore X carries the usual Zariski topology of linear groups (see
[10], Chapter 5) and has a connected component X◦ containing the identity. Using
the proof of [9], Proposition 2.2, we see that if Y is a finitely generated subgroup
of G containing X , then the topology induced on X from that on Y coincides with
the Zariski topology on X . Thus X◦ is well-defined and X◦ ≤ Y ◦.

Let G− denote the union of the subgroups X◦ where X ranges through all the
finitely generated subgroups of G. The following result is well-known.

2.1. Lemma. Let G ≤ FGL(V ).
1. G− �G and G/G− is locally finite.
2. If X is a class of groups and if for each finitely generated subgroup X of G we

have X◦ ∈ X, then G− is locally-X.

Proof. Now X◦ �X and the X◦ form a local system of G−, where X is a finitely
generated subgroup of G. Thus G−�G and 2 follows. A finitely generated subgroup
of G/G− has the form G−X/G− where X is some finitely generated subgroup of G.
Now X◦ has finite index in X by [10], Lemma 5.2, and X◦ ≤ G−. Thus G−X/G−

is finite.

2.2. Proposition. Let G ≤ FGL(V ).
1. Suppose that X is a subgroup closed class of groups such that if P ≤ L, where
L is linear over a field and P ∈ X, then the Zariski closure of P in L lies in
X. If G is locally X-by-finite, then G is locally-X by locally-finite.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LAWLESSNESS AND RANK RESTRICTIONS IN FINITARY GROUPS 2817

2. Suppose that X is a variety. If G is locally X-by-finite, then G is X by locally-
finite.

Part 2 of Proposition 2.2 for D a field is [6], Theorem 2.3.

Proof. Let H be a finitely generated subgroup of G. Then there is a normal sub-
group N of H such that N ∈ X and H/N is finite.

In the case of 1, the closure N of N in H lies in X. Now N ≤ N so that (H : N)
is finite. Thus H◦ ≤ N by [10], Lemma 5.3. Since X is subgroup closed, H◦ ∈ X.

In the case of 2, H has a closed normal X-subgroup M of finite index in H by
[10], Lemma 10.7 (for example, in the notation there H ∩AF (N)). By [10], Lemma
5.3 again, H◦ ≤M . A variety is always subgroup closed and thus H◦ ∈ X.

The result now follows from Lemma 2.1, using the fact that a variety is locally
closed.

The proofs of Theorem 1, Part 1 and Theorem 2, Part 2(a). Let G ≤ FGL(V ).
Suppose that G has finite Prüfer rank. Let X be a finitely generated subgroup
of G. Now X is linear and so by Platonov’s Theorem, X has a soluble normal
subgroup N of finite index in X . By [10], Theorem 5.11(i), the closure N of N is
X is soluble. By Proposition 2.2, Part 1, G is locally-soluble by locally-finite.

Suppose that charD = charF > 0. In this case, X is abelian-by-finite by
Platonov’s Theorem. The abelian groups form a variety. Thus by Proposition
2.2, Part 2, G is abelian by locally-finite.

We have now proved Theorem 2, Part 2(a). A similar argument gives Theorem
1, Part 1.

Theorem 2.1 of [6] is a finitary linear version of the Tits’ alternative. Using the
finite-dimensional Tits’ alternative ([10], Theorem 10.16) and Proposition 2.2 we
obtain:

2.3. Proposition. Let G ≤ FGL(V ). Then G is either locally-soluble by locally-
finite or contains a non-cyclic free group.

A. Lichtman (see [8], Theorem 1.4.9) has constructed a finitely generated skew
linear group G which satisfies a non-trivial law (so, in particular, contains no non-
cyclic free subgroup) and is not soluble-by-finite. Because G is finitely generated, it
cannot be locally-soluble by locally-finite. Thus Theorem 1, Part 1 and Proposition
2.3 are not true when D is an arbitrary division ring.

3. Techniques for primitive groups

For this section only, D is any division ring. Recently much progress has been
made in determining the structure of locally finite primitive irreducible finitary
skew linear groups. The following results rely on the Classification of Finite Simple
Groups.

3.1. Theorem. Let G be a locally finite primitive irreducible subgroup of FGL(V )
where dimDV is infinite. Then G contains a simple normal subgroup S �G.

This was proved by Phillips ([4], Theorem A) for D a field and by Wehrfritz
([12], Theorem) in the general case. In fact S turns out to be G′, a result proved
by Leinen and Puglisi ([2], Theorem B) and independently by Redford [7] for D a
field, and by Wehrfritz [12] for all division rings.

We also know all possibilities for S in Theorem 3.1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2818 C. J. E. PINNOCK

3.2. Theorem. Let G be a non-linear simple locally finite subgroup of FGL(V ).
Then G is either an infinite alternating group, or is one of the following types over
a locally finite field: finitary symplectic, finitary special unitary, finitary orthogonal
or special transvection.

This classification was obtained by J. I. Hall ([1], Theorem 1.3) for D a field and
by Wehrfritz ([12], Corollary 1) for any division ring D. For a description of the
groups in Theorem 3.2, see [1].

3.3. Proposition. Let G be a non-linear locally finite simple subgroup of FGL(V ).
Then G contains a copy of every finite group.

Proof. This is left as an exercise using Theorem 3.2. For example, if G is a special
transvection group over the field K, it contains SL(n,K) for all n (see [1] or [2]).
Thus G contains a copy of every finite group.

4. The proofs

We have already established Theorem 1, Part 1 and Theorem 2, Part 2(a).

4.1. Proposition. Let G be a transitive finitary permutation group on Ω and sup-
pose that G has finite Prüfer rank. Then Ω is finite.

Theorem 2, Part 1 clearly follows from Proposition 4.1. We note two key exam-
ples. Let n be any positive integer and p be any prime. Then the direct product
C

(n)
p of n copies of Cp has Prüfer rank n. In particular, any infinite direct product

of copies of Cp has infinite Prüfer rank. Since C(n)
p embeds into Alt(pn + 2) for all

n, the group Alt(Ω) has infinite Prüfer rank when Ω is infinite.

Proof of Proposition 4.1. Suppose that Ω is infinite. Using P. M. Neumann’s ter-
minology (see [3], Section 2), G is either primitive, almost primitive or totally
imprimitive. By the Jordan-Wielandt Theorem ([13], Satz 9.4), a primitive group
contains Alt(∆) for some infinite set ∆. Also an almost primitive group has an
image containing some Alt(∆). By the remark preceding this proof, we need only
consider the totally imprimitive case.

Since G is locally finite, we can choose an element g ∈ G of prime order p.
Put ∆ = suppΩ(g), the support of g on Ω. Now ∆ is a finite non-empty set. By
[3], Theorem 2.4(i), we can choose a G-congruence with blocks (Ωi)i∈I such that
∆ ⊆ Ω1, say.

Using the transitivity of G, there is xi ∈ G such that Ω1xi = Ωi. Now for every
i ∈ I, we have suppΩ(gxi) = ∆xi ⊆ Ωi. Thus the gxi commute. Furthermore, it
is easy to see that 〈gxi |i ∈ I〉 ∼= C

(I)
p . Now I is an infinite set, so C(I)

p has infinite
Prüfer rank. Thus G has infinite Prüfer rank. This completes the proof of the
proposition.

Conclusion of the proofs. Let G be an irreducible subgroup of FGL(V ) with
dimD(V ) infinite. Suppose that either G has finite Prüfer rank or satisfies a non-
trivial law. If G is imprimitive, then it has an image isomorphic to a transitive
finitary permutation group of infinite degree. By [3], Theorem 1, and Proposition
4.1 above, this is not possible. Thus G is primitive.

Now G is locally-soluble by locally-finite. By the main theorem of [11], G is
locally finite. Applying Theorem 3.1 and Proposition 3.3, we see that G contains
copies of all finite groups. In particular G contains C(n)

p for all n, so G has infinite
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Prüfer rank. Also the variety V generated by G contains the class of all finite
groups. Any free group is residually finite and any variety is residually closed.
Thus V contains every free group and hence it contains every group, that is, G
generates the variety of all groups. These contradictions give the results.

Author’s note

I would like to express my gratitude to my Ph.D. supervisor B. A. F. Wehrfritz
for his help and encouragement. I thank R. E. Phillips for providing me with a
copy of [4].
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