## $L^p$ boundedness of localization operators associated to left regular representations

HTML articles powered by AMS MathViewer

- by M. W. Wong PDF
- Proc. Amer. Math. Soc.
**130**(2002), 2911-2919 Request permission

## Abstract:

We prove an $L^p$ boundedness result for localization operators associated to left regular representations of locally compact and Hausdorff groups and give an application to wavelet multipliers.## References

- A. L. Carey,
*Square-integrable representations of non-unimodular groups*, Bull. Austral. Math. Soc.**15**(1976), no. 1, 1–12. MR**430146**, DOI 10.1017/S0004972700036728 - I. Daubechies, Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inform. Theory
**34**(1988), 605-612. - Ingrid Daubechies,
*Ten lectures on wavelets*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR**1162107**, DOI 10.1137/1.9781611970104 - M. Duflo and Calvin C. Moore,
*On the regular representation of a nonunimodular locally compact group*, J. Functional Analysis**21**(1976), no. 2, 209–243. MR**0393335**, DOI 10.1016/0022-1236(76)90079-3 - Jingde Du and M. W. Wong,
*Traces of localization operators*, C. R. Math. Acad. Sci. Soc. R. Can.**22**(2000), no. 2, 92–96 (English, with English and French summaries). MR**1764724** - J. Du and M. W. Wong, Traces of wavelet multipliers, C.R. Math. Acad. Sci. Soc. R. Can.
**23**(2001), 148-152. - Gerald B. Folland,
*A course in abstract harmonic analysis*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR**1397028** - A. Grossmann, J. Morlet, and T. Paul,
*Transforms associated to square integrable group representations. I. General results*, J. Math. Phys.**26**(1985), no. 10, 2473–2479. MR**803788**, DOI 10.1063/1.526761 - Zhiping He and M. W. Wong,
*Localization operators associated to square integrable group representations*, PanAmer. Math. J.**6**(1996), no. 1, 93–104. MR**1366611** - Z. He and M. W. Wong,
*Wavelet multipliers and signals*, J. Austral. Math. Soc. Ser. B**40**(1999), no. 4, 437–446. MR**1684253**, DOI 10.1017/S0334270000010523 - Hitoshi Kumano-go,
*Pseudodifferential operators*, MIT Press, Cambridge, Mass.-London, 1981. Translated from the Japanese by the author, Rémi Vaillancourt and Michihiro Nagase. MR**666870** - H. J. Landau and H. O. Pollak,
*Prolate spheroidal wave functions, Fourier analysis and uncertainty. II*, Bell System Tech. J.**40**(1961), 65–84. MR**140733**, DOI 10.1002/j.1538-7305.1961.tb03977.x - H. J. Landau and H. O. Pollak,
*Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals*, Bell System Tech. J.**41**(1962), 1295–1336. MR**147686**, DOI 10.1002/j.1538-7305.1962.tb03279.x - David Slepian,
*On bandwidth*, Proc. IEEE**64**(1976), no. 3, 292–300. MR**0462765**, DOI 10.1109/PROC.1976.10110 - David Slepian,
*Some comments on Fourier analysis, uncertainty and modeling*, SIAM Rev.**25**(1983), no. 3, 379–393. MR**710468**, DOI 10.1137/1025078 - D. Slepian and H. O. Pollak,
*Prolate spheroidal wave functions, Fourier analysis and uncertainty. I*, Bell System Tech. J.**40**(1961), 43–63. MR**140732**, DOI 10.1002/j.1538-7305.1961.tb03976.x - Elias M. Stein and Guido Weiss,
*Introduction to Fourier analysis on Euclidean spaces*, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR**0304972** - M. W. Wong,
*Weyl transforms*, Universitext, Springer-Verlag, New York, 1998. MR**1639461** - M. W. Wong,
*An introduction to pseudo-differential operators*, 2nd ed., World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR**1698573**, DOI 10.1142/4047 - M. W. Wong,
*Localization operators*, Lecture Notes Series, vol. 47, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1999. MR**1723544**

## Additional Information

**M. W. Wong**- Affiliation: Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
- Email: mwwong@pascal.math.yorku.ca
- Received by editor(s): February 21, 2001
- Published electronically: May 8, 2002
- Additional Notes: This research has been partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0008562
- Communicated by: David R. Larson
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**130**(2002), 2911-2919 - MSC (2000): Primary 47G10
- DOI: https://doi.org/10.1090/S0002-9939-02-06685-6
- MathSciNet review: 1908914