A $D_E[0,1]$ representation of random upper semicontinuous functions
HTML articles powered by AMS MathViewer
- by Ana Colubi, J. S. Domínguez-Menchero, Miguel López-Díaz and Dan Ralescu
- Proc. Amer. Math. Soc. 130 (2002), 3237-3242
- DOI: https://doi.org/10.1090/S0002-9939-02-06429-8
- Published electronically: March 25, 2002
- PDF | Request permission
Abstract:
In this paper a representation of random upper semicontinuous functions in terms of $D_E[0,1]$-valued random elements is stated. This fact allows us to consider for the first time a complete and separable metric, the Skorohod one, on a wide class of upper semicontinuous functions. Finally, different relevant concepts of measurability for random upper semicontinuous functions are studied and the relationships between them are analyzed.References
- Jean-Pierre Aubin, Mutational and morphological analysis, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1999. Tools for shape evolution and morphogenesis. MR 1712751, DOI 10.1007/978-1-4612-1576-9
- Gerald Beer, Conjugate convex functions and the epi-distance topology, Proc. Amer. Math. Soc. 108 (1990), no. 1, 117–126. MR 982400, DOI 10.1090/S0002-9939-1990-0982400-8
- Gerald Beer, R. T. Rockafellar, and Roger J.-B. Wets, A characterization of epi-convergence in terms of convergence of level sets, Proc. Amer. Math. Soc. 116 (1992), no. 3, 753–761. MR 1119262, DOI 10.1090/S0002-9939-1992-1119262-6
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- M. Bloznelis, Central limit theorem for stochastically continuous processes. Convergence to stable limit, J. Theoret. Probab. 9 (1996), no. 3, 541–560. MR 1400586, DOI 10.1007/BF02214074
- Frédéric Cao, Partial differential equations and mathematical morphology, J. Math. Pures Appl. (9) 77 (1998), no. 9, 909–941 (English, with English and French summaries). MR 1656780, DOI 10.1016/S0021-7824(01)80003-9
- Ana Colubi, Miguel López-Díaz, J. Santos Domínguez-Menchero, and M. Angeles Gil, A generalized strong law of large numbers, Probab. Theory Related Fields 114 (1999), no. 3, 401–417. MR 1705111, DOI 10.1007/s004400050229
- Gerard Debreu, Integration of correspondences, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 351–372. MR 0228252
- Phil Diamond and Peter Kloeden, Metric spaces of fuzzy sets, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. Theory and applications. MR 1337027, DOI 10.1142/2326
- Stewart N. Ethier and Thomas G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. Characterization and convergence. MR 838085, DOI 10.1002/9780470316658
- Olga Fiedler and Werner Römisch, Stability in multistage stochastic programming, Ann. Oper. Res. 56 (1995), 79–93. Stochastic programming (Udine, 1992). MR 1339786, DOI 10.1007/BF02031701
- Jean Jacod and Philip Protter, A remark on the weak convergence of processes in the Skorohod topology, J. Theoret. Probab. 6 (1993), no. 3, 463–472. MR 1230341, DOI 10.1007/BF01066712
- Jean Jacod and Albert N. Shiryaev, Limit theorems for stochastic processes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, Springer-Verlag, Berlin, 1987. MR 959133, DOI 10.1007/978-3-662-02514-7
- Adam Jakubowski, On the Skorokhod topology, Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 3, 263–285 (English, with French summary). MR 871083
- Olav Kallenberg, Foundations of modern probability, Probability and its Applications (New York), Springer-Verlag, New York, 1997. MR 1464694
- Jan Kisyński, Metrization of $D_E[0,1]$ by Hausdorff distance between graphs, Ann. Polon. Math. 51 (1990), 195–203. MR 1093990, DOI 10.4064/ap-51-1-195-203
- E. P. Klement, M. L. Puri, and D. A. Ralescu, Limit theorems for fuzzy random variables, Proc. Roy. Soc. London Ser. A 407 (1986), no. 1832, 171–182. MR 861082
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Itaru Mitoma, Tightness of probabilities on $C([0,1];{\cal S}^{\prime } )$ and $D([0,1];{\cal S}^{\prime } )$, Ann. Probab. 11 (1983), no. 4, 989–999. MR 714961
- K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- David Pollard, Convergence of stochastic processes, Springer Series in Statistics, Springer-Verlag, New York, 1984. MR 762984, DOI 10.1007/978-1-4612-5254-2
- Madan L. Puri and Dan A. Ralescu, Différentielle d’une fonction floue, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 4, 237–239 (French, with English summary). MR 636972
- Madan L. Puri and Dan A. Ralescu, The concept of normality for fuzzy random variables, Ann. Probab. 13 (1985), no. 4, 1373–1379. MR 806235
- Madan L. Puri and Dan A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), no. 2, 409–422. MR 833596, DOI 10.1016/0022-247X(86)90093-4
- Ioana Schiopu-Kratina and Peter Daffer, Convergence of weighted sums and laws of large numbers in $D([0,1];E)$, J. Multivariate Anal. 53 (1995), no. 2, 279–292. MR 1336058, DOI 10.1006/jmva.1995.1037
- J. Serra, Image analysis and mathematical morphology, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1984. English version revised by Noel Cressie. MR 753649
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Aad W. van der Vaart and Jon A. Wellner, Weak convergence and empirical processes, Springer Series in Statistics, Springer-Verlag, New York, 1996. With applications to statistics. MR 1385671, DOI 10.1007/978-1-4757-2545-2
Bibliographic Information
- Ana Colubi
- Affiliation: Departamento de Estadstica e IO, Universidad de Oviedo, 33071, Oviedo, Spain
- Email: colubi@pinon.ccu.uniovi.es
- J. S. Domínguez-Menchero
- Affiliation: Departamento de Estadstica e IO, Universidad de Oviedo, 33071, Oviedo, Spain
- Email: jsdm@pinon.ccu.uniovi.es
- Miguel López-Díaz
- Affiliation: Departamento de Estadstica e IO, Universidad de Oviedo, 33071, Oviedo, Spain
- Email: mld@pinon.ccu.uniovi.es
- Dan Ralescu
- Affiliation: Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221
- Email: Dan.Ralescu@math.uc.edu
- Received by editor(s): March 2, 2000
- Received by editor(s) in revised form: June 1, 2001
- Published electronically: March 25, 2002
- Additional Notes: The work of the first, second and third authors was partially supported by the Spanish DGESYC (MEC) Grants No. PB95-1049, No. PB97-1282 and PB98-1534.
The work of the fourth author was partially supported by the NSF Grant MRI 9871345 and by the STA Fellowship 398049. - Communicated by: Claudia M. Neuhauser
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 3237-3242
- MSC (1991): Primary 49J45, 60B99, 28A20, 54C35
- DOI: https://doi.org/10.1090/S0002-9939-02-06429-8
- MathSciNet review: 1913001