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TREE-LIKE CONTINUA DO NOT ADMIT
EXPANSIVE HOMEOMORPHISMS

CHRISTOPHER MOURON

(Communicated by Alan Dow)

Abstract. A homeomorphism h : X → X is called expansive provided that
for some fixed c > 0 and every x, y ∈ X there exists an integer n, dependent
only on x and y, such that d(hn(x), hn(y)) > c. It is shown that if X is a
tree-like continuum, then h cannot be expansive.

1. Introduction

A continuum is a nondegenerate compact connected metric space. A homeo-
morphism h : X → X is called expansive provided that for some fixed c > 0 and
every x, y ∈ X there exists an integer n, dependent only on x and y, such that
d(hn(x), hn(y)) > c. Expansive homeomorphisms exhibit chaotic behavior in that
no matter how close two points are, either their forward or reverse image will even-
tually be a certain distance apart. Plykin’s attractors [4] and the dyadic solenoid
[6] are examples of continua that admit expansive homeomorphisms.

If U is a collection of open sets, the mesh of U is defined as mesh(U) =
sup{diam(U) : U ∈ U}. If U is a finite open cover of continuum X , then the
nerve of U is a geometric complex N (U) which has a vertex vi that corresponds to
each element Ui of U such that 〈vi1 , vi2 , ..., vij 〉 is a simplex of N (U) if and only if
Ui1 ∩Ui2 ∩ ...∩Uij 6= ∅. A continuum X is arc-like if for every ε > 0, there exists a
finite open cover U whose mesh is less than ε and whose nerve is an arc. Arc-like
continua are also called chainable and snake-like continua. A continuum is tree-like
if for every ε > 0, there exists a finite open cover U whose mesh is less than ε and
whose nerve contains no simple closed curves (i.e. a tree-graph). An open cover
whose nerve is a tree is called a tree-cover. Equivalent definitions for a tree-like
continuum, X , are the following:

1) For every ε > 0, there is an onto map g : X → T such that diam(g−1(y)) < ε
for each y ∈ T where T is a tree.

2) X = lim←−{Ti, fi}
∞
i=0. Where each Ti is a tree and each fi : Ti+1 −→ Ti is a

bonding map.
A continuum is 1-dimensional if for every ε > 0 there exists a finite open cover

U whose mesh is less than ε such that for every y ∈ X , y is in at most 2 elements

Received by the editors August 16, 2000 and, in revised form, June 21, 2001.
2000 Mathematics Subject Classification. Primary 54H20, 54F50; Secondary 54E40.
Key words and phrases. Expansive homeomorphism, tree-like continua.
The author is pleased to acknowledge the many useful comments and suggestions made by

Charles Hagopian.

c©2002 American Mathematical Society

3409

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3410 C. MOURON

of U . A planar continuum X is a non-separating plane continuum provided that
R2−X is connected. It is important to note that all 1-dimensional non-separating
plane continua are tree-like. However, not all tree-like continua can be embedded
in the plane.

In order for a homeomorphism h to be expansive, h must stretch subcontinua.
Since compactness must be preserved, these subcontinua must either be stretched
and wrapped or stretched and folded. If a continuum is tree-like, some folding
must occur. In this paper, we will see that stretching and folding is not enough
to produce an expansive homeomorphism since folding also pushes points closer
together. However, stretching and folding is enough to produce continuum-wise
expansive homeomorphisms, as there are several examples of arc-like and tree-like
continua that admit continuum-wise expansive homeomorphisms [2].

In [3], Kato has shown that arc-like continua do not admit expansive home-
omorphisms by first showing that the pseudo-arc does not admit an expansive
homeomorphism and then by lifting a homeomorphism of an arc-like continuum to
a homeomorphism of the pseudo-arc. Unfortunately, these techniques cannot be
extended to tree-like continua. In F.W. Worth’s Dissertation, it was shown that
shift homeomorphisms from the inverse limit of tree graphs cannot be expansive
homeomorphisms [7], and Kato has also shown that no hereditarily decomposable
tree-like continuum can admit an expansive homeomorphism. In the sequel, these
results are generalized and it is shown that no tree-like continuum can admit an
expansive homeomorphism.

2. Main results

The structure of the proof is as follows:
1) For purposes of a contradiction, it is assumed that h : X −→ X is an expansive

homeomorphism of tree-like continuum X with expansive constant c and let 0 <
ε < c/3.

2) A nondegenerate subcontinuum M is found such that diam(hi(M)) → 0 as
i→ −∞.

3) For each k, finite sequences {ak = xki , ..., x
k
ik

= bk} ⊂ M are found such that
d(xki , x

k
i+1) < δk and d(ak, bk) < γk, where δk, γk → 0.

4) For each k, it is shown that there are elements xkα, x
k
β ∈ {ak = xki , ..., x

k
ik

= bk}
such that d(xkα, x

k
β) < γk, d(hi(xkα), hi(xkβ)) < ε for all i ≤ 0, and there exists an

integer n, 0 ≤ n ≤ k, such that ε/3 ≤ d(hn(xkα), hn(xkβ)) < ε. Let yk = hn(xkα) and
zk = hn(xkβ).

5) For each k, it is shown that d(yk, zk) ≥ ε/3 and d(hi(yk), hi(zk)) < ε for all
i ≤ k.

6) Finally, it is shown that there exist limit points y, z of {zk}∞k=1, {yk}∞k=1,
respectively, such that y 6= z and d(hi(y), hi(z)) < 2ε < c which is a contradiction.

The first proposition follows from the Simple Chain Theorem which can be found
in most graduate texts such as [5].

Proposition 1. Suppose X is connected and a, b ∈ X. For every ε > 0 there exists
a finite sequence {xi}ni=1 ⊂ X such that x1 = a, xn = b, and d(xi, xi+1) < ε.

The previous sequence is called a simple chain sequence from a to b with mesh
less than ε. The next theorem is due to Kato [2].
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Theorem 2. Let h be an expansive homeomorphism of a continuum X. There ex-
ists a nondegenerate subcontinuum M of X such that either limn→∞ diam hn(M) =
0 or limn→−∞ diam hn(M) = 0.

Proposition 3. Suppose T is a tree cover for continuum X. Let a and b be points
of X in the same element T1 of T and let {xi}ni=1 be a simple chain sequence from
a to b whose mesh is less than the Lebesgue number for T . If x2 and xn−1 are not
in the same element of T , then there exists a k, 2 ≤ k ≤ n− 1, such that xk ∈ T1.

Proof. Suppose not. We may assume that x2 and xn−1 are not in T1. (Otherwise
we are done.) Since each xi and xi+1 are in a common element of T , let Ti+1

be an element of T that contains both xi and xi+1. Since x2 and xn−1 are not
in the same element of T we can conclude that T1, T2, and Tn are all different.
Also, since Ti and Ti+1 both contain xi, Ti and Ti+1 must intersect. Likewise,
T1 and Tn both contain xn and hence must intersect. Therefore, the sequence
[T1, T2, ..., Tn, T1] must contain a circle-chain. But that contradicts the fact that T
is a tree cover.

Next, if h is a homeomorphism and n a positive integer, define L(h, n, ε) to be a
number greater than 0 such that

d(x, y) < L(h, n, ε) implies d(hi(x), hi(y)) < ε.

for all −n ≤ i ≤ n, and

Qn(a, b) = max
−n≤i≤0

{d(hi(a), hi(b))}.

Notice that for n fixed, Qn(a, b) is a metric and hence follows the triangle inequality.

Lemma 4. Suppose h : X −→ X is a homeomorphism of a continuum X and that
{xi}mi=1 is a simple chain sequence from a to b with mesh less than L(h, n, ε/6).
Also, suppose that {xi}mi=1 is contained in some tree-cover T such that a and b are
in the same element T1 of T and that the mesh of {xi}mi=1 is less than the Lebesgue
number of T . If Qn(a, b) ≥ ε, then there exist xα, xβ ∈ {xi}mi=1 such that xα, xβ
are in the same link of T and ε/3 ≤ Qn(xα, xβ) < ε.

Proof. Given T ∈ T and subsequence {xi}m2
i=m1

of {xi}mi=1 where xm1 , xm2 ∈ T ,
define W (T, {xi}m2

i=m1
) = {xα, xβ} where xα, xβ are the elements of T ∩ {xi}m2

i=m1

such that Qn(xα, xβ) ≥ ε and the difference between the indices, |α − β|, is mini-
mized. Notice that W (T, {xi}m2

i=m1
) will often not exist. However,W (T1, {xi}mi=1) =

{xα1 , xβ1} where α1 < β1 exists since Qn(a, b) ≥ ε. There are 3 cases to consider:
Notice that if Qn(xα1+1, xβ1−1) ≥ ε, then xα1+1 and xβ1−1 cannot both be in T1

since β1 − 1− (α1 + 1) < β1 − α1.
Case 1. Qn(xα1+1, xβ1−1) < ε and xα1+1, xβ1−1 are in the same element of T .
Since d(hi(xα1 ), hi(xα1+1)) < ε/6 and d(hi(xβ1), hi(xβ1−1)) < ε/6 for all −n ≤

i ≤ 0, we have ε/3 < Qn(xα1 , xβ1)− ε/6− ε/6 < Qn(xα1+1, xβ1−1) < ε and we are
done.

Case 2. xα1+1 and xβ1−1 are not contained in the same element of T .
Then, by Proposition 3, there exists a k1, α1 + 1 ≤ k1 ≤ β1 − 1 such that

xk1 ∈ T1. Qn(xα1 , xk1) < ε and Qn(xβ1 , xk1) < ε since |k1 − α1| < |β1 − α1| and
|k1−β1| < |β1−α1|. Hence, by the triangle inequality, either ε/3 < Qn(xα1 , xk1) < ε
or ε/3 < Qn(xk1 , xβ1) < ε and we are done. The next case creates an induction
argument for this lemma.
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Case 3. ε ≤ Qn(xα1+1, xβ1−1) and xα1+1 and xβ1−1 are in same element of T ,
say T2.

Then W (T2, {xi}β1−1
α1+1) = {xα2 , xβ2}, where α2 < β2.

Suppose T2, . . . , Tj and xα2 , xβ2 , . . . , xαj , xβj have been found, again we have 3
cases to consider:

Case 1-j. Qn(xαj+1, xβj−1) < ε and xαj+1, xβj−1 are in the same element of T .
As in Case 1, this implies that we are done.
Case 2-j. xαj+1 and xβj−1 are not contained in the same element of T .
As in Case 2, this implies that we are done.
Case 3-j. ε ≤ Qn(xαj+1, xβj−1) and xαj+1 and xβj−1 are in the same element

of T , say Tj+1.
Then W (Tj+1, {xi}βj−1

i=αj+1) = {xαj+1 , xβj+1}, where αj+1 < βj+1, and the induc-
tion continues.

Eventually, the induction must stop at some j1. Otherwise, since αj+1 > αj and
βj+1 < βj , there would be a j2 such that |βj2−αj2 | ≤ 1, which would in turn imply
Qn(xαj2 , xβj2 ) < ε/6 which is impossible. So if the induction stops at j1, then Case
3-j1 cannot be satisfied. Hence either Case 1-j1 or Case 2-j1 must be satisfied and
the lemma is satisfied.

Lemma 5. Let h : X −→ X be a homeomorphism of a compact space onto itself.
Suppose that there exist sequences {yi}∞i=1, {zi}∞i=1 such that d(hk(yn), hk(zn)) < ε
for all k ≤ n. Then there exists a limit point y of {yi}∞i=1 and a limit point z of
{zi}∞i=1 such that d(hk(y), hk(z)) < 2ε for all k.

Proof. Let Y be the set of limit points of {yi}∞i=1. Pick y in Y and let {yαi}∞i=1 be a
subseqence that converges to y. Let Zα be the set of limit points of {zαi}∞i=1. Pick
z ∈ Zα and let {zβi}∞i=1 be a subsequence of {zαi}∞i=1 that converges to z. Then
{yβi}∞i=1 is a subsequence of {yαi}∞i=1 and hence also converges to y.

For each positive integer n, there exists mn≥n such that d(yβmn , y)<L(h, n, ε/2)
and d(zβmn , z) < L(h, n, ε/2). Thus,

d(hk(y), hk(z)) < d(hk(y), hk(yβmn )) + d(hk(yβmn ), hk(zβmn ))

+ d(hk(zβmn ), hk(z)) < ε/2 + ε+ ε/2

for all −n ≤ k ≤ n. Since n is arbitrary, the lemma holds.

Theorem 6. Tree-like continua do not admit expansive homeomorphisms.

Proof. Suppose that h : X −→ X is an expansive homeomorphism of tree-like
continuum X with expansive constant c. Let ε be chosen such that 0 < ε < c/3. By
Theorem 2, there exists a nondegenerate subcontinuum M such that either limn→∞
diam hn(M) = 0 or limn→−∞ diam hn(M) = 0. Without loss of generality, we may
assume that diam(hi(M)) < ε for all i ≤ 0. Let {δk}∞k=1 be a sequence of positive
numbers such that each δk < L(h, k, ε/6). Let Tk be a tree-cover of X with mesh
< δk. Let Ak be any |Tk| + 1 elements of M . By the pigeon-hole principle, for
each N , there must be at least 2 elements akN , b

k
N ∈ Ak such that hN (akN ), hN (bkN )

are in a common element of Tk. Since Ak is finite, we may conclude that there
are two elements ak, bk ∈ Ak and a sequence of increasing integers {Nj}∞j=1 such
that hNj (ak) and hNj (bk) are in a common element of Tk for each j. Also, since
h is expansive, there exists an integer nk such that d(hnk(ak), hnk(bk)) ≥ c > ε.
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Pick Njk ≥ nk. By Lemma 4, there exists xkα, x
k
β ∈ hNjk (M) such that ε/3 ≤

QNjk (xkα, xkβ) < ε and d(xkα, xkβ) < δk. Hence, d(hi(xkα), hi(xkβ)) < ε for all i ≤ k.
Now, let mk be the positive integer such that d(h−mk(xkα), h−mk(xkβ)) ≥ ε/3. Let

yk = h−mk(xkα) and zk = h−mk(xkβ). Then d(hi(yk), hi(zk)) < ε for all i < k +mk.
By Lemma 5, there exist limit points y of {yk}∞k=1 and z of {zk}∞k=1 such that
d(hi(y), hi(z)) ≤ 2ε < c for all i. However, since d(yk, zk) ≥ ε/3, y and z must be
distinct. Therefore, h is not expansive.

A continuum is decomposable if it is the union of two of its proper subcontinuum
and indecomposable otherwise. A continuum is hereditarily indecomposable if every
subcontinuum is indecomposable.

Question 1 ([3]). Does there exist a hereditarily indecomposable continuum that
admits an expansive homeomorphism?

Question 2. Does there exist a non-separating plane continuum that admits an
expansive homeomorphism?

If so, then it cannot be 1-dimensional.
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