P.I. envelopes of classical simple Lie superalgebras
HTML articles powered by AMS MathViewer
- by Ian M. Musson
- Proc. Amer. Math. Soc. 130 (2002), 3185-3191
- DOI: https://doi.org/10.1090/S0002-9939-02-06481-X
- Published electronically: March 25, 2002
- PDF | Request permission
Abstract:
Let $\mathfrak {g}$ be a classical simple Lie superalgebra. We describe the prime ideals $P$ in the enveloping algebra $U(\mathfrak {g})$ such that $U(\mathfrak {g})/P$ satisfies a polynomial identity. If the factor algebra $U(\mathfrak {g})/P$ is not artinian, then it is an order in a matrix algebra over $K(z)$.References
- Yuri Bahturin and Susan Montgomery, PI-envelopes of Lie superalgebras, Proc. Amer. Math. Soc. 127 (1999), no. 10, 2829–2839. MR 1600092, DOI 10.1090/S0002-9939-99-04825-X
- Walter Borho, Peter Gabriel, and Rudolf Rentschler, Primideale in Einhüllenden auflösbarer Lie-Algebren (Beschreibung durch Bahnenräume), Lecture Notes in Mathematics, Vol. 357, Springer-Verlag, Berlin-New York, 1973 (German). MR 0376790
- K. A. Brown and S. P. Smith, Bimodules over a solvable algebraic Lie algebra, Quart. J. Math. Oxford Ser. (2) 36 (1985), no. 142, 129–139. MR 790475, DOI 10.1093/qmath/36.2.129
- A. V. Jategaonkar, Localization in Noetherian rings, London Mathematical Society Lecture Note Series, vol. 98, Cambridge University Press, Cambridge, 1986. MR 839644, DOI 10.1017/CBO9780511661938
- V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96. MR 486011, DOI 10.1016/0001-8708(77)90017-2
- V. Kac, Representations of classical Lie superalgebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) Lecture Notes in Math., vol. 676, Springer, Berlin, 1978, pp. 597–626. MR 519631
- Edward Letzter, Primitive ideals in finite extensions of Noetherian rings, J. London Math. Soc. (2) 39 (1989), no. 3, 427–435. MR 1002455, DOI 10.1112/jlms/s2-39.3.427
- Edward S. Letzter, Finite correspondence of spectra in Noetherian ring extensions, Proc. Amer. Math. Soc. 116 (1992), no. 3, 645–652. MR 1098402, DOI 10.1090/S0002-9939-1992-1098402-1
- Edward S. Letzter, A bijection of primitive spectra for classical Lie superalgebras of type I, J. London Math. Soc. (2) 53 (1996), no. 1, 39–49. MR 1362685, DOI 10.1112/jlms/53.1.39
- S. Minakshi Sundaram, On non-linear partial differential equations of the hyperbolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 495–503. MR 0000089
Bibliographic Information
- Ian M. Musson
- Affiliation: Department of Mathematical Sciences, University of Wisconsin, Milwaukee, Wisconsin 53211
- MR Author ID: 189473
- Email: musson@csd.uwm.edu
- Received by editor(s): June 12, 2001
- Published electronically: March 25, 2002
- Communicated by: Lance W. Small
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 3185-3191
- MSC (2000): Primary 17B20, 17B35
- DOI: https://doi.org/10.1090/S0002-9939-02-06481-X
- MathSciNet review: 1912996