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ON MULHOLLAND’S INEQUALITY

WITOLD JARCZYK AND JANUSZ MATKOWSKI

(Communicated by Jonathan M. Borwein)

Abstract. H.P. Mulholland has presented a sufficient condition for a gener-
alization of the Minkowski inequality and another such condition was given by
R.M. Tardiff. We show that Mulholland’s condition implies Tardiff’s, but that
the converse is false.

In 1950 H.P. Mulholland [4] (see also [1, Theorem VIII.8.1]) proved the following:
If ϕ : (0,∞) → (0,∞) is a continuous function with lim

x→0
ϕ(x) = 0, and if the

functions ϕ and log ◦ϕ ◦ exp are convex, then

ϕ−1(ϕ(x1 + y1) + ϕ(x2 + y2)) ≤ ϕ−1(ϕ(x1) + ϕ(x2)) + ϕ−1(ϕ(y1) + ϕ(y2))

for all x1, x2, y1, y2 ∈ (0,∞).
(1)

Another result of this type was proved in 1984 by R.M. Tardiff [6] and reads as
follows:

If ϕ : (0,∞)→ (0,∞) is a differentiable function with ϕ′ > 0 and lim
x→0

ϕ(x) = 0,

and if the functions ϕ and log ◦ϕ′ ◦ exp are convex, then (1) holds.
It is quite obvious that for ϕ(x) = xp with p ≥ 1 each of the above results yields

the classical Minkowski inequality. The function ϕ given by ϕ(x) = expx − 1 for
x ∈ (0,∞) serves as an example to show that both Mulholland’s and Tardiff’s results
yield inequalities distinct from Minkowski’s. For an integral version of Mulholland’s
inequality the reader is referred to [3].

It is easy to verify that a continuous function f : (0,∞) → (0,∞) is such that
log ◦f ◦ exp is convex if and only if

f(
√
xy) ≤

√
f(x)f(y) for all x ∈ (0,∞),

i.e., if and only if f is convex with respect to the geometric mean. Accordingly,
following the terminology introduced in [2], we will say that any such function f
is geometrically convex. Note that geometrically convex functions have the same
limiting and differentiability properties as ordinary convex functions (cf. [1, Chap-
ter VII]). Since the sum of two convex functions is convex, it is also clear that the
product of two geometrically convex functions is geometrically convex. Moreover,
if f : (0,∞) → (0,∞) is increasing and log ◦f is convex, i.e. f is logarithmi-
cally convex, then f is geometrically convex. In fact, making use of the inequality
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0 <
√
xy ≤ x+y

2 for all x, y ∈ (0,∞), we have

f(
√
xy) = exp(log f(

√
xy)) ≤ exp

(
log f

(
x+ y

2

))
≤ exp

log f(x) + log f(y)
2

=
√
f(x)f(y)

for all x, y ∈ (0,∞).
Recently, B. Schweizer (private communication; see also [5]) posed the problem

of comparing Mulholland’s and Tardiff’s results. His question can be formulated
more precisely in the following way:

Let ϕ : (0,∞) → (0,∞) be a differentiable convex function with ϕ′ > 0 and
lim
x→0

ϕ(x) = 0. Is there any relation between the geometric convexity of ϕ and ϕ′?

In this note we will prove (see the Theorem below) that for (not necessarily con-
vex) functions having the limit zero at zero geometric convexity of the derivative
implies geometric convexity of the function. Thus Tardiff’s theorem follows from
Mulholland’s. On the other hand, as we show by an example, there are (even con-
vex) geometrically convex functions whose derivatives are not geometrically convex.

We start with the formulation of the main result.

Theorem. Let ϕ : (0,∞) → (0,∞) be a differentiable function with ϕ′ > 0 and
lim
x→0

ϕ(x) = 0. If ϕ′ is geometrically convex, then so is ϕ.

In the proof we will use the following:

Lemma. Let ϕ : (0,∞) → (0,∞) be a differentiable function with ϕ′ > 0 and
lim
x→0

ϕ(x) = 0. If ϕ′ is geometrically convex, then

lim
x→0

xϕ′(x) = 0.

Proof. Since the product of two geometrically convex functions as well as the iden-
tity function are geometrically convex, the function (0,∞) 3 x 7→ xϕ′(x) has the
same property and, consequently, lim

x→0
xϕ′(x) exists. By the Lagrange Mean Value

Theorem for every x ∈ (0,∞) there is a ξ(x) ∈ (0, x) such that

ϕ(x) = xϕ′(ξ(x)).

Thus

0 < ξ(x)ϕ′(ξ(x)) < xϕ′(ξ(x)) = ϕ(x) for x ∈ (0,∞)

whence

lim
x→0

ξ(x)ϕ′(ξ(x)) = 0

and the assertion follows.

Proof of the Theorem. Since log ◦ϕ′ ◦ exp is convex it is absolutely continuous and,
consequently, ϕ′ is absolutely continuous and the set D of all points of differentia-
bility of ϕ′ has the property that

card((0,∞) \D) ≤ ℵ0.
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Fix an x ∈ logD. Then, since log ◦ϕ′ ◦ exp has an increasing derivative on logD,
for any t ∈ D ∩ (0, expx] we have

(tϕ′(t))′ = ϕ′(t)
(

1 + t
ϕ′′(t)
ϕ′(t)

)
= ϕ′(t)(1 + (log ◦ϕ′ ◦ exp)′(log t)) ≤ ϕ′(t)(1 + (log ◦ϕ′ ◦ exp)′(x)),

whence, by the Lemma,

expx · ϕ′(expx) =

expx∫
0

(tϕ′(t))′dt ≤ (1 + (log ◦ϕ′ ◦ exp)′(x))

expx∫
0

ϕ′(t)dt

= (1 + (log ◦ϕ′ ◦ exp)′(x))ϕ(exp x).

Thus, since

(log ◦ϕ ◦ exp)′(x) =
expx · ϕ′(expx)

ϕ(exp x)
,

for x ∈ logD we have

(log ◦ϕ ◦ exp)′(x) ≤ 1 + (log ◦ϕ′ ◦ exp)′(x),

whence

0 ≤ 1 +
[
log

ϕ′(expx)
ϕ(expx)

]′
=
[
log
(

expx · ϕ
′(expx)
ϕ(expx)

)]′
for x ∈ logD.

Consequently, [
log
(
t
ϕ′(t)
ϕ(t)

)]′
≥ 0 for t ∈ D.

Since the function (0,∞) 3 t 7→ log
(
tϕ
′(t)
ϕ(t)

)
is absolutely continuous, the above

condition yields that it is increasing, so that the function

(0,∞) 3 t 7→ t
ϕ′(t)
ϕ(t)

has the same property. Consequently, the function (log ◦ϕ◦exp)′ is increasing, that
is to say ϕ is geometrically convex.

Example. We will describe a rather general procedure for the construction of a
function which is convex and geometrically convex, has the limit zero at zero, but
whose derivative is not geometrically convex.

Let f : (0,∞) → (0,∞) be an arbitrary increasing differentiable function such
that the function (0,∞) 3 x 7→ f(x)/x is integrable on each interval of the form
(0, a). Clearly the function ϕ : (0,∞)→ (0,∞) defined by

ϕ(x) = x exp

x∫
0

f(t)
t
dt(2)

is twice differentiable and lim
x→0

ϕ(x) = 0. Since

ϕ′(x) = (1 + f(x)) exp

x∫
0

f(t)
t
dt for x ∈ (0,∞),(3)
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the function ϕ′ is increasing and, consequently, ϕ is convex. Moreover,

x
ϕ′(x)
ϕ(x)

= 1 + f(x) for x ∈ (0,∞)

which means that (log ◦ϕ ◦ exp)′ is increasing. Thus ϕ is geometrically convex.
It follows from (3) and (2) that for every x ∈ (0,∞),

ϕ′(x) = (1 + f(x))
ϕ(x)
x

and

xϕ′′(x) = x

(
f ′(x) + (1 + f(x))

f(x)
x

)
exp

x∫
0

f(t)
t
dt

= (xf ′(x) + f(x) + f(x)2)
ϕ(x)
x

.

Therefore

x
ϕ′′(x)
ϕ′(x)

=
xf ′(x)

1 + f(x)
+ f(x) for x ∈ (0,∞)

and to infer that ϕ′ is not geometrically convex it suffices to choose f in such a way
that the function F : (0,∞)→ R given by

F (x) =
xf ′(x)

1 + f(x)
+ f(x)

is not increasing.
To this end, let

f(x) =
x+ sinx

x+ sinx+ 1
for x ∈ (0,∞).

Clearly f is increasing and differentiable and

f ′(x) =
1 + cosx

(x+ sinx+ 1)2
for x ∈ (0,∞).

Moreover, the function (0,∞) 3 x 7→ f(x)/x has a finite limit at zero, so it is
integrable on each interval of the form (0, a). For every k ∈ N we have

f(kπ) =
kπ

kπ + 1
and f ′(kπ) =

1 + (−1)k

(kπ + 1)2
,

whence

F (kπ) =
kπ 1+(−1)k

(kπ+1)2

1 + kπ
kπ+1

+
kπ

kπ + 1
=

kπ

kπ + 1

(
1 + (−1)k

2kπ + 1
+ 1
)
.

Consequently,

F (2kπ) =
2kπ

2kπ + 1
· 4kπ + 3

4kπ + 1
>

2kπ
2kπ + 1

· 4kπ + 2
4kπ + 1

= 2 · 2kπ
4kπ + 1

=
4kπ

4kπ + 1
>

(2k + 1)π
(2k + 1)π + 1

= F ((2k + 1)π)

for each k ∈ N which yields the desired result. �
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Observe that the Example also gives an answer to a question posed by Tardiff
[6] who asked for a convex function which satisfies Mulholland’s inequality (1) and
whose derivative is not geometrically convex.
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