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ON SYZYGIES OF SEGRE EMBEDDINGS

ELENA RUBEI

(Communicated by Michael Stillman)

Abstract. We study the syzygies of the ideals of the Segre embeddings. Let
d ∈ N, d ≥ 3; we prove that the line bundle O(1, ...,1) on the P 1 × ... × P 1

(d copies) satisfies Property Np of Green-Lazarsfeld if and only if p ≤ 3.
Besides we prove that if we have a projective variety not satisfying Property
Np for some p, then the product of it with any other projective variety does
not satisfy Property Np. From this we also deduce other corollaries about
syzygies of Segre embeddings.

1. Introduction

Let L be a very ample line bundle on a smooth complex projective variety Y and
let ϕL : Y → P(H0(Y, L)∗) be the map associated to L. We recall the definition
of Property Np of Green-Lazarsfeld, studied for the first time by Green in [Gr1-2]
(see also [G-L], [Gr3]):

Let Y be a smooth complex projective variety and let L be a very ample line
bundle on Y defining an embedding ϕL : Y ↪→ P = P(H0(Y, L)∗); set S = S(L) =
Sym∗H0(L), the homogeneous coordinate ring of the projective space P, and con-
sider the graded S-module G = G(L) =

⊕
nH

0(Y, Ln); let E∗
0 −→ En −→ En−1 −→ ... −→ E0 −→ G −→ 0

be a minimal graded free resolution of G; the line bundle L satisfies Property Np
(p ∈ N) if and only if

E0 = S,

Ei =
⊕

S(−i− 1) for 1 ≤ i ≤ p.

(Thus L satisfies Property N0 if and only if Y ⊂ P(H0(L)∗) is projectively normal,
i.e. L is normally generated; L satisfies Property N1 if and only if L satisfies
Property N0 and the homogeneous ideal I of Y ⊂ P(H0(L)∗) is generated by
quadrics; L satisfies Property N2 if and only if L satisfies Property N1 and the
module of syzygies among quadratic generators Qi ∈ I is spanned by relations of
the form

∑
LiQi = 0, where Li are linear polynomials; and so on.)

Now let L = OPn1×...×Pnd (a1, ..., ad), where d, a1, ..., ad, n1, ..., nd are positive
integers. Among the papers on syzygies in this case we quote [B-M], [Gr1-2], [O-P],
[J-P-W], [G-P], [Las], and [P-W]. In the first one, the authors examined the cases
in which the resolution is “pure”, i.e. the minimal generators of each module of
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syzygies have the same degree. We quote the following results from the other
papers:

Case d = 1, i.e. the case of the Veronese embedding:

Theorem 1 (Green [Gr1-2]). Let a be a positive integer. The line bundle OPn(a)
satisfies Property Na.

Theorem 2 (Ottaviani-Paoletti [O-P]). If n ≥ 2, a ≥ 3 and the bundle OPn(a)
satisfies Property Np, then p ≤ 3a− 3.

Theorem 3 (Josefiak-Pragacz-Weyman [J-P-W]). The bundle OPn(2) satisfies
Property Np if and only if p ≤ 5 when n ≥ 3 and for all p when n = 2.

(See [O-P] for a more complete bibliography.)
Case d = 2:

Theorem 4 (Gallego-Purnapranja [G-P]). Let a, b ≥ 2. The line bundle
OP1×P1(a, b) satisfies Property Np if and only if p ≤ 2a+ 2b− 3.

Theorem 5 (Lascoux-Pragacz-Weymann [Las], [P-W]). Let n1, n2 ≥ 2. The line
bundle OPn1×Pn2 (1, 1) satisfies Property Np if and only if p ≤ 3.

Here we consider O(1, ..., 1) on P1 × ... × P1 (d times, for any d). We prove
(Section 2):

Theorem 6. The line bundle O(1, ..., 1) on P1×...×P1 (d times) satisfies Property
N3 for any d.

Besides we prove (Section 3):

Proposition 7. Let X and Y be two projective varieties and let L be a line bundle
on X and M a line bundle on Y . Let πX : X×Y → X and πY : X×Y → Y be the
canonical projections. Suppose L and M satisfy Property N1. Let p ≥ 2. If L does
not satisfy Property Np, then π∗XL⊗ π∗YM does not satisfy Property Np, either.

Corollary 8. Let a1, ..., ad be positive integers with a1 ≤ a2 ≤ ... ≤ ad. Suppose
k = max{i|ai = 1}. If k ≥ 3 the line bundle OPn1×...×Pnd (a1, ..., ad) does not
satisfy Property N4 and if d− k ≥ 2 it does not satisfy Property N2ak+1+2ak+2−2.

In particular, from Corollary 8 and Theorem 6, we have:

Corollary 9. Let d ≥ 3. The line bundle OP1×...×P1(1, ..., 1) (d times) satisfies
Property Np if and only if p ≤ 3.

2. Proof of Theorem 6

First we have to recall some facts on toric ideals from [St].
Let k ∈ N. Let A = {a1, ..., an} be a subset of Zk. The toric ideal IA is defined

as the ideal in C[x1, ..., xn] generated as vector space by the binomials

xu1
1 ... xunn − xv1

1 ... x
vn
n

for (u1, ..., un), (v1, .., vn) ∈ Nn, with
∑

i=1,...,n uiai =
∑

i=1,...,n viai.
We have that IA is homogeneous if and only if ∃ ω ∈ Qk s.t. ω · ai = 1

∀i = 1, ..., n; the rings C[x1, ..., xn] and C[x1, ..., xn]/IA are multigraded by NA
via deg xi = ai; the element xu1

1 ...xunn has multidegree b =
∑
i uiai ∈ NA and

degree
∑

i ui = b · ω; we define deg b = b · ω.
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For each b ∈ NA, let ∆b be the simplicial complex on the set {1, ..., n} defined
as follows:

∆b = {F ⊂ {1, ..., n} : b−
∑
i∈F

ai ∈ NA}

(thus, by identifying {1, ..., n} with A, we have:

∆b =
⋃

k∈N,ai1 ,...,aik∈A,ai1+...+aik=b

〈ai1 , ..., aik〉,

where 〈ai1 , ..., aik〉 is the simplex generated by ai1 , ..., aik).
The following theorem studies the syzygies of the ideal IA; it was proved by

Campillo and Marijuan for k = 1 in [C-M] and by Campillo and Pison for general
k and j = 0 in [C-P]; the following more general statement is due to Sturmfels
(Theorem 12.12 p. 120 in [St]).

Theorem 10 (see [St] and also [C-M], [C-P]). Let A = {a1, ..., an} be a subset of
Nk and IA be the associated toric ideal. Let 0 → En → ... → E1 → E0 → G → 0
be a minimal free resolution of G = C[x1, ..., xn]/IA on C[x1, ..., xn]. Each of
the generators of Ej has a unique multidegree. The number of the generators of
multidegree b ∈ NA of Ej+1 equals the rank of the j-th reduced homology group
H̃j(∆b,C) of the simplicial complex ∆b.

Notation 11. If α is a chain in a topological space, sp(α) will denote the support
of α, i.e. the union of the supports of the simplexes σi s.t. α =

∑
i ciσi, ci ∈ Z. If

X is a simplicial complex, ski(X) will denote the i-skeleton of X .

Proof of Theorem 6. If we take A = Ad = {(1, ε1, ..., εd)|εi ∈ {0, 1}}, we have that
IAd is the ideal of the Segre embedding of P1 × ... × P1 (d times), i.e. the ideal
of the embedding of P1 × ... ×P1 (d times) by the line bundle O(1, ..., 1). In fact
the ideal of the Segre embedding is generated as vector space by the homogeneous
equations of the form∏

ε1,...,εd∈{0,1}
x
vε1,...,εd
ε1,...,εd −

∏
ε1,...,εd∈{0,1}

x
uε1 ,...,εd
ε1,...,εd = 0

with uε1,...,εd , vε1,...,εd ∈ N and∑
ε1,...,εd∈{0,1}

vε1,...,εd(ε1, ..., εd) =
∑

ε1,...,εd∈{0,1}
uε1,...,εd(ε1, ..., εd).

The last condition is equivalent to∑
ε1,...,εd∈{0,1}

vε1,...,εd(1, ε1, ..., εd) =
∑

ε1,...,εd∈{0,1}
uε1,...,εd(1, ε1, ..., εd)

(the equality of the first coordinate gives the homogeneity).
In this case ω = ωd = (1, 0, ..., 0) (0 repeated d times) and n = 2d.
Let b ∈ NAd; we have that deg b = (= b · ω) = k if and only if b is the sum

of k (not necessarily distinct) elements of Ad. By identifying the set {1, ..., 2d}
with Ad, we have that, if k = deg b, ∆b =

⋃
ai1 ,...,aik∈Ad,ai1+...+aik=b〈ai1 , ..., aik〉;

we say that 〈ai1 , ..., aik〉 is a degenerate (k − 1)-simplex if ∃ l,m ∈ {1, ..., k} with
l 6= m s.t. ail = aim ; thus ∆b is equal to the union of the (possibly degenerate)
(k − 1)-simplexes S with vertices in Ad such that the sum of the vertices (with
multiplicities) of S is b.
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By Theorem 10, in order to prove that OP1×...×P1(1, ..., 1) (d times) satisfies N2,
we have to prove that H1(∆b) = 0 for each b ∈ NAd with deg b ≥ 4. Analogously
in order to prove that OP1×...×P1(1, ..., 1) (d times) satisfies N3, we have to prove
that H2(∆b) = 0 for each b ∈ NAd with deg b ≥ 5.

The proof is by induction on d. Observe that any b′ ∈ NAd+1 with deg b′ = k is
equal to

(
b
ε

)
for some b ∈ NAd with deg b = k and for some ε ∈ {0, 1, ..., k}. Then,

in order to prove N2 we suppose (by induction) that H1(∆b) = 0 ∀b ∈ NAd with
deg b = k, k ≥ 4, and we show that H1(∆(bε)) = 0 for ε ∈ {0, ..., k} and in order to
prove N3 we suppose (by induction) that H2(∆b) = 0 ∀b ∈ NAd with deg b = k,
k ≥ 5, and we show that H2(∆(bε)) = 0 for ε ∈ {0, ..., k}.

Observe that, if ε ∈ {0, k} (k := deg b), then obviously ∆(bε) and ∆b are iso-
morphic; besides ∆( b

k−ε) is isomorphic to ∆(bε) ∀ε ∈ {0, . . . , k} (the isomorphism is
given by substituting 0 with 1 and 1 with 0 in the last coordinate). Thus we may
consider only the cases ε ∈ {1, ..., [k2 ]}.

First we need some preliminary notation and lemmas.

Notation 12. Let S = 〈a1, ..., ak〉 be a (possibly degenerate) k−1-simplex, ai ∈ Ad.
Let ε ∈ {0, ..., k}. We denote

S′ε =
⋃

(χ1,...,χk) s.t. χj∈{0,1} for j=1,...,k
and exactly ε of χ1,...,χk are equal to 1

〈(
a1

χ1

)
, ...,

(
ak
χk

)〉
.

Example 13. Let S = 〈a1, a2, a3, a4〉 be a (possibly degenerate) tetrahedron, ai ∈
Ad. The set S′1 is the union of the four (possibly degenerate) tetrahedrons〈(

a1

1

)
,

(
a2

0

)
,

(
a3

0

)
,

(
a4

0

)〉
,

〈(
a1

0

)
,

(
a2

1

)
,

(
a3

0

)
,

(
a4

0

)〉
,〈(

a1

0

)
,

(
a2

0

)
,

(
a3

1

)
,

(
a4

0

)〉
,

〈(
a1

0

)
,

(
a2

0

)
,

(
a3

0

)
,

(
a4

1

)〉
.

Thus S′1 can be obtained from S by “constructing a tetrahedron on every one of
the four faces of S” and considering the union of these four tetrahedrons. The set
S′2 is the union of the following six (possibly degenerate) tetrahedrons:〈(

a1

0

)
,

(
a2

0

)
,

(
a3

1

)
,

(
a4

1

)〉
,

〈(
a1

0

)
,

(
a2

1

)
,

(
a3

0

)
,

(
a4

1

)〉
,〈(

a1

0

)
,

(
a2

1

)
,

(
a3

1

)
,

(
a4

0

)〉
,

〈(
a1

1

)
,

(
a2

0

)
,

(
a3

0

)
,

(
a4

1

)〉
,〈(

a1

1

)
,

(
a2

0

)
,

(
a3

1

)
,

(
a4

0

)〉
,

〈(
a1

1

)
,

(
a2

1

)
,

(
a3

0

)
,

(
a4

0

)〉
.

Then S′2 can be obtained from S by “constructing a tetrahedron on every one of
the six edges of S” and considering the union of these six tetrahedrons (see Figure
1, representing S′ε in the case S is not degenerate).

Let b ∈ NAd with deg b = k and ε ∈ {0, ..., k}. Obviously

∆(bε) =
⋃

S=〈a1,...,ak〉 with a1+...+ak=b

S′ε.
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Figure 1.

Note to Figure 1. In the representation of S′2, for the sake of simplicity, we do not
represent the tetrahedrons

〈(
a1
0

)
,
(
a2
1

)
,
(
a3
0

)
,
(
a4
1

)〉
and

〈(
a1
1

)
,
(
a2
0

)
,
(
a3
1

)
,
(
a4
0

)〉
.

Notation 14. Let b ∈ NAd with deg b = k. For l ∈ N, 0 ≤ l ≤ k − 1, let

F l(∆b) =
⋃

a1,...,ak∈Ad s.t. a1+...+ak=b

⋃
i0,...,il∈{1,...,k}

〈(
ai0
0

)
, ...,

(
ail
0

)〉
.

Observe that F l(∆b) ⊆ ∆(bε) iff k − ε ≥ l + 1.
The idea of the proof is to consider an l-cycle (for l = 1, 2) in ∆(bε) and to show

that it is homologous to an l-cycle in F l(∆b) and then to show that it is homologous
to 0 by using that Hl(∆b) = 0.

Remark 15. Let S = 〈a1, ..., ak〉, ai ∈ Ad. If k ≥ 4 and 1 ≤ ε ≤ k − 2, the set
S′ε contains the cone with vertex

(
al
1

)
on the border of

〈(ai1
0

)
,
(ai2

0

)
,
(ai3

0

)〉
for any

i1, i2, i3, l ∈ {1, ..., k}, with l 6= ij for j = 1, 2, 3. This is true in particular if k ≥ 4
and ε ∈ {1, ..., [k2 ]}.

If k ≥ 5 and 1 ≤ ε ≤ k − 3, the set S′ε contains the cone with vertex
(
al
1

)
on the

border of
〈(ai1

0

)
, ...,

(ai4
0

)〉
for any i1, ..., i4, l ∈ {1, ..., k} with l 6= ij for j = 1, 2, 3, 4.

This is true in particular if k ≥ 5 and ε ∈ {1, ..., [k2 ]}.
Definition 16. For any c ∈ NAd with deg c = s and ε ∈ {1, ..., s}, we define Rc,ε
to be the following set:⋃

α1,...,αs∈Ad
s.t. α1+...+αs=c

⋃
i1,...,is−1∈{1,...,s}

il 6=im

〈(
αi1
1

)
, ...,

(
αiε−1

1

)
,

(
αiε
0

)
, ...,

(
αis−1

0

)〉
.

Lemma 17. Let c ∈ NAd with deg c = s. We have that H̃i(∆( c
ε−1)) = 0 im-

plies H̃i(Rc,ε) = 0 if we are in one of the following cases: a) i = 0, s ≥ 3,
ε ∈ {1, ..., [ s+1

2 ]}; b) i = 1, s ≥ 4, ε ∈ {1, ..., [ s+1
2 ]}.

Proof. Observe that Rc,ε ⊆ ∆( c
ε−1). Since H̃i(∆( c

ε−1)) = 0, we have

H̃i(ski+1(∆( c
ε−1))) = 0.

Obviously ski+1(Rc,ε) ⊆ ski+1(∆( c
ε−1)). We want to show H̃i(ski+1(Rc,ε)) = 0.

Let β be an i-cycle in ski+1(Rc,ε). Since H̃i(ski+1(∆( c
ε−1))) = 0, there exists an
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(i+ 1)-chain η in ski+1(∆( c
ε−1)) s.t. ∂η = β. Suppose sp(η) =

⋃
j Fj , where Fj are

(i + 1)-simplexes in ski+1(∆( c
ε−1)); consider now an (i + 1)-chain ψ in ski+1(Rc,ε)

whose support is
⋃
j F̂j , where F̂j = Fj if Fj ⊆ ski+1(Rc,ε) and F̂j is a cone on the

border of Fj if Fj 6⊆ ski+1(Rc,ε), in such way that ∂ψ = β (observe that in our
cases such cones exist, in fact: Rc,ε is the union of the (possibly degenerate) (s−2)-
simplexes “obtained from the (possibly degenerate) (s− 1)-simplexes of ∆( c

ε−1) by
taking off a vertex whose last coordinate is 0”; in the case i = 0 one can check that
the 1-simplexes s.t. the last coordinate of a vertex and the last coordinate of the
other vertex are 1, 1 or 1, 0 are contained in Rc,ε, while for a 1-simplex F s.t. the
last coordinate of each vertex is 0, there exists a cone, F̂ , on the border of F with
F̂ ⊆ Rc,ε, since s ≥ 3; analogously case b)). Thus we proved H̃i(ski+1(Rc,ε)) = 0.
Thus H̃i(Rc,ε) = 0.

Proof that OP1×...×P1(1, ..., 1) satisfies property N2.

Lemma 18. Let b ∈ NAd, deg b = k, k ≥ 4 and ε ∈ {1, ..., [k2 ]}. Every 1−cycle γ
in ∆(bε) is homologous to a 1−cycle in F 1(∆b) (which is ⊆ ∆(bε) since k − ε ≥ 2).

Proof. Obviously we can suppose sp(γ) ⊆ sk1(∆(bε)). The proof is by induction

on the cardinality of (sp(γ) ∩ sk0(∆(bε))) − F 1(∆b), i.e. we will prove that γ is
homologous to a 1-cycle γ̃ s.t.

]((sp(γ̃) ∩ sk0(∆(bε)))− F 1(∆b)) < ]((sp(γ) ∩ sk0(∆(bε)))− F 1(∆b)).

First we remark that if P,
(
a
1

)
∈ sk0(∆(bε)) and 〈P,

(
a
1

)
〉 ⊆ ∆(bε), then P ∈ Rb−a,ε

(∗).
In fact, 〈P,

(
a
1

)
〉 ⊆ ∆(bε), then P ∈ ∆(b−aε−1); we recall that Rb−a,ε is

⋃
α1,...,αk−1∈Ad

s.t. α1+...+αk−1=b−a

⋃
i1,...,ik−2∈{1,...,k−1}

il 6=im

〈(
αi1
1

)
, ...,

(
αiε−1

1

)
,

(
αiε
0

)
, ...,

(
αik−2

0

)〉
,

i.e. Rb−a,ε is the union of the (possibly degenerate) (k − 3)-simplexes “obtained
from the (possibly degenerate) (k − 2)-simplexes of ∆(b−aε−1) by taking off a vertex
whose last coordinate is 0”; then, if the last coordinate of P is 1, we may conclude
at once that P ∈ Rb−a,ε; also if the last coordinate of P is 0, we may conclude
that P ∈ Rb−a,ε, because the number of the vertices whose last coordinate is 0 in
a (possibly degenerate) (k − 2)-simplex of ∆(b−aε−1) is k − 1− (ε− 1) ≥ 2.

Now let
(
a
1

)
∈ (sp(γ) ∩ sk0(∆(bε))) − F 1(∆b), (a ∈ Ad). Intuitively we want to

modify slightly γ to obtain a homologous 1-cycle γ̃ passing through
(
a
0

)
instead of(

a
1

)
.
Let S(a1) be the set of all 1-simplexes τ of γ s.t. sp(τ) 3

(
a
1

)
. We can suppose that

every 1-simplex τ ∈ S(a1) be s.t. sp(τ) be a 1-simplex of ∆(bε) and τ : [0, 1]→ ∆(bε)
be injective.

For τ ∈ S(a1), let τ ′ : [0, 1] → ∆(bε) be a 1-simplex s.t. τ ′(ε) = τ(ε) if τ(ε) 6=
(
a
1

)
and τ ′(ε) =

(
a
0

)
if τ(ε) =

(
a
1

)
, for ε ∈ {0, 1}. Let α be the 1 cycle

∑
τ∈S(a1)

(−τ + τ ′).
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By remark (∗), we have that sp(α) ⊆ C, where C is the union of the two cones
〈
(
a
1

)
, Rb−a,ε〉 and 〈

(
a
0

)
, Rb−a,ε〉. Observe that C ⊆ ∆(bε). We state that H1(C) = 0:

by Theorem 10, since OP1×...×P1(1, ..., 1) (d times) satisfies Property N1 ∀d, we
have H̃0(∆g) = 0 ∀g ∈ NAd with deg g ≥ 3, ∀d (this can easily be proved directly
without using thatOP1×...×P1(1, ..., 1) satisfies PropertyN1); then H̃0(∆(b−aε−1)) = 0;

thus H̃0(Rb−a,ε) = 0 by Lemma 17; we have H̃i(C) = H̃i−1(Rb−a,ε); thus H1(C) =
H̃0(Rb−a,ε) = 0. Thus we have that α is homologous to 0. Thus γ is homologous
to γ + α.

Obviously the support of γ̃ := γ+α can be obtained from sp(γ) by substituting
sp(τ) with sp(τ ′) ∀τ ∈ S(a1). Then

]((sp(γ̃) ∩ sk0(∆(bε)))− F 1(∆b)) < ]((sp(γ) ∩ sk0(∆(bε)))− F 1(∆b));

thus we conclude the proof of Lemma 18.

In order to prove that OP1×...×P1(1, .., 1) (d times) satisfies N2 for any d, we
suppose (by induction) that H1(∆b) = 0 ∀b ∈ NAd with deg b = k, k ≥ 4, and we
show that H1(∆(bε)) = 0 for ε ∈ {1, ..., [k2 ]}.

Cases ε ≤ k − 3. We know that every 1-cycle γ in ∆(bε) is homologous to a

1−cycle in F 1(∆b) by Lemma 18. Thus, since F 2(∆b) ⊆ ∆(bε) and H1(F 2(∆b)) = 0
(because, by induction hypothesis, H1(∆b) = 0), we have that H1(∆(bε)) = 0.

Cases ε > k − 3. These cases are slightly more difficult. By Lemma 18 every 1-
cycle γ in ∆(bε) is homologous to a 1-cycle γ′ in F 1(∆b). But in these cases we have

not the inclusion F 2(∆b) ⊆ ∆(bε), thus we have to conclude the proof in another
way.

Since H1(F 2(∆b)) = 0, there exists a 2-chain µ in F 2(∆b) s.t. ∂µ = γ′. Let
sp(µ) =

⋃
i Fi, Fi triangles in F 2(∆b). Consider a 2-chain ψ in ∆(bε) whose support

is
⋃
i F̂i, where F̂i is a cone ⊆ ∆(bε) on the border of Fi (there exists by Remark

15), in such way that ∂ψ = γ′; thus [γ′] = 0 in H1(∆(bε)), thus [γ] = 0 in H1(∆(bε)).
Thus H1(∆(bε)) = 0.

Proof that OP1×...×P1(1, ..., 1) satisfies property N3.

Lemma 19. Let b ∈ NAd with deg b = k and ε ∈ {1, ..., [k2 ]}. If k ≥ 5, every
2-cycle µ in ∆(bε) is homologous to a 2-cycle in F 2(∆b) (which is ⊆ ∆(bε) since
k − ε ≥ 3).

Proof. Obviously we can suppose that sp(µ) ⊆ sk2(∆(bε)). The proof is by in-

duction on the cardinality of (sp(µ) ∩ sk0(∆(bε))) − F 2(∆b), i.e. we will prove

that µ is homologous to a 2-cycle µ̃ s.t. ]((sp(µ̃) ∩ sk0(∆(bε))) − F 2(∆b)) <

]((sp(µ) ∩ sk0(∆(bε)))− F 2(∆b)).

We remark that if P,Q,
(
a
1

)
∈ sk0(∆(bε)) and 〈P,Q,

(
a
1

)
〉 ⊆ ∆(bε), then 〈P,Q〉 ⊆

Rb−a,ε. (∗)
In fact 〈P,Q,

(
a
1

)
〉 ⊆ ∆(bε); then 〈P,Q〉 ⊆ ∆(b−aε−1). Since Rb−a,ε is the union of

the (possibly degenerate) (k−3)-simplexes “obtained from the (possibly degenerate)
(k − 2)-simplexes of ∆(b−aε−1) by taking off a vertex whose last coordinate is 0” and
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since the number of the vertices whose last coordinate is 0 in a (possibly degenerate)
(k − 2)-simplex of ∆(b−aε−1) is k − 1− (ε− 1) ≥ 3, we have 〈P,Q〉 ⊆ Rb−a,ε.

Let S(a1) be the set of all 2-simplexes τ : 〈(0, 0), (0, 1), (1, 0)〉 → ∆(bε) of µ

s.t. sp(τ) 3
(
a
1

)
. We can suppose that every 2-simplex τ ∈ S(a1) be s.t. sp(τ)

be a 2-simplex of ∆(bε), τ(ε) ∈ sk0(∆(bε)) for ε ∈ {(0, 0), (0, 1), (1, 0)} and τ :
〈(0, 0), (0, 1), (1, 0)〉 → ∆(bε) be injective.

For τ ∈ S(a1) let τ ′ : 〈(0, 0), (0, 1), (1, 0)〉 → ∆(bε) be a 2-simplex s.t. τ ′(ε) = τ(ε)

if τ(ε) 6=
(
a
1

)
and τ ′(ε) =

(
a
0

)
if τ(ε) =

(
a
1

)
for ε ∈ {(0, 0), (0, 1), (1, 0)}. Let α be the

2-cycle
∑

τ∈S(a1)
(−τ + τ ′).

By remark (∗), we have that sp(α) ⊆ C, where C is the union of the two
cones 〈

(
a
1

)
, Rb−a,ε〉 and 〈

(
a
0

)
, Rb−a,ε〉. Observe that C ⊆ ∆(bε). We state that

H2(C) = 0: we have already proved that OP1×...×P1(1, ..., 1) satisfies Property N2

i.e. H1(∆g) = 0 ∀g with deg g ≥ 4; thus H1(∆(b−aε−1)) = 0; then H1(Rb−a,ε) = 0 by

Lemma 17; we have H̃i(C) = H̃i−1(Rb−a,ε); thus H2(C) = H1(Rb−a,ε) = 0. Thus
we have that α is homologous to 0. Thus µ is homologous to µ+ α.

The support of the cycle µ̃ := µ+α can be obtained from sp(µ) by substituting
sp(τ) with sp(τ ′) ∀τ ∈ S(a1). Then

]((sp(µ̃) ∩ sk0(∆(bε)))− F 2(∆b)) < ]((sp(µ) ∩ sk0(∆(bε)))− F 2(∆b));

thus we conclude the proof of Lemma 19.

In order to prove that OP1×...×P1(1, ..., 1) (d times) satisfies N3 for any d, we
suppose (by induction) that H2(∆b) = 0 ∀b ∈ NAd with deg b = k, k ≥ 5 and we
show that H2(∆(bε)) = 0 for ε ∈ {1, ..., [k2 ]}.

Cases ε ≤ k − 4. We have that every 2-cycle µ in ∆(bε) is homologous to a 2-

cycle µ̃ in F 2(∆b) by Lemma 19. Since H2(F 3(∆b)) = 0 (because, by induction
hypothesis, H2(∆b) = 0), we have that [µ̃] = 0 in H2(F 3(∆b)) = 0. Since in
these cases F 3(∆b) ⊆ ∆(bε), we may conclude that [µ] = [µ̃] = 0 in H2(∆(bε)), thus
H2(∆(bε)) = 0.

Cases ε > k − 4. We have that every 2-cycle µ in ∆(bε) is homologous to a 2-

cycle µ̃ in F 2(∆b) by Lemma 19. Since H2(F 3(∆b)) = 0 (because H2(∆b) = 0),
we have that [µ̃] = 0 in H2(F 3(∆b)) = 0. But in these cases we have not the
inclusion F 3(∆b) ⊆ ∆(bε), thus we may not conclude at once. SinceH2(F 3(∆b)) = 0,

there exists a 3-chain ν in F 3(∆b) s.t. ∂ν = µ̃. We have that sp(ν) =
⋃
i Fi, Fi

tetrahedrons in F 3(∆b). Consider a 3-chain ψ in ∆(bε) whose support is
⋃
i F̂i,

where F̂i is a cone ⊆ ∆(bε) on the border of Fi (there exists by Remark 15), in such
a way that ∂ψ = µ̃; thus [µ̃] = 0 in H2(∆(bε)), thus [µ] = 0 in H2(∆(bε)). Then we
may conclude that H2(∆(bε)) = 0.

This completes the proof of Theorem 6.

3. Proof of Proposition 7

Let X and Y be two projective varieties and L a very ample line bundle on X
and M a very ample line bundle on Y . Let {σ0, ..., σk} be a basis of H0(X,L) and
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let {s0, ..., sl} be a basis of H0(Y,M); we can suppose ∃ y ∈ Y s.t. s0(y) 6= 0,
sj(y) = 0 for j 6= 0; let ti,j be the coordinates corresponding to {σi ⊗ sj}i,j of the
embedding of X ×Y by π∗XL⊗ π∗YM (where π· is the projection on ·) and let ti be
the coordinates corresponding to {σ0, ..., σk} of the embedding of X by L.

Remark 20. By setting ti,j = 0 for j 6= 0 in an equation of X × Y and then taking
off the last index (a 0) of each variable, we get an equation of X (to prove this, use
y).

Remark 21. Let M be a graded module on C[x1, ..., xn] with a minimal set of
generators of degree s; then a subset of elements of degree s of M can be extended
to a minimal set of generators if and only if these elements are linearly independent
on C.

Proof of Proposition 7. Suppose L satisfies Property Np−1 but not Np. We want to
show π∗XL⊗π∗YM does not satisfy PropertyNp; we can suppose π∗XL⊗π∗YM satisfies
Property Np−1. Let lm and qm be the ranks of the m-module of a minimal free
graded resolution respectively of G(L) and of G(π∗XL⊗π∗YM). Let {gmj }j=1,...,lm be
a minimal set of generators of the m-module Em of a minimal resolution of G(L),

...→ Em → Em−1 → ...→ E0 → G(L)→ 0.

Since L satisfies Property Np−1 but not Np, there exists a syzygy S of (gp−1
1 , ...,

gp−1
lp−1

), s.t. S is not generated by linear syzygies of (gp−1
1 , ..., gp−1

lp−1
). Add a 0 to

the indices of the variables appearing in S and call S̃ the so-obtained vector of
polynomials; let S̃′ = (S̃, 0, ..., 0) with 0 repeated qp−1 − lp−1 times.

Obviously by adding a 0 to the indices of each variable appearing in the equations
of X , we get equations of X × Y and by adding a 0 to the indices of every variable
appearing in the syzygies of X we get syzygies of X × Y .

Add a 0 to the indices of the variables appearing in gmj and call g̃mj the so-
obtained vector of polynomials for j = 1, ..., lm; set f1

j = g̃1
j for j = 1, ..., l1 and

fmj = (g̃mj , 0, ..., 0) (0 repeated qm−1 − lm−1 times) for j = 1, ..., lm and 2 ≤ m ≤
p− 1; fmj for j = 1, ..., lm are vectors of linear polynomials for 2 ≤ m ≤ p− 1 and
they are quadratic if m = 1. Thus, by induction on m and by Remark 21, one can
extend this set to a minimal set of generators {fmj }j=1,...,qm , of the m-module of a
minimal resolution of G(π∗XL ⊗ π∗YM) for m ≤ p − 1 (we recall that we supposed
π∗XL ⊗ π∗YM satisfies Property Np−1); we can do it in such way that, when we
set ti,j = 0 for j 6= 0, we have that f1

j is zero for j = l1 + 1, ..., q1 and the r-th
coordinate of fmj is zero for r ≤ lm−1 and j = lm + 1, ..., qm (we can prove this by
induction on m, by using Remark 20 for the case m = 1: it is sufficient to subtract
linear combination of fmj for j = 1, ..., lm to fmj for j = lm + 1, ..., qm).

Obviously S̃′ is a syzygy of (fp−1
1 , ..., fp−1

qp−1
).

If π∗XL ⊗ π∗YM satisfies Property Np, then S̃′ would be generated by linear
syzygies of (fp−1

1 , ..., fp−1
qp−1

).
We state that S̃′ cannot be generated by linear syzygies of (fp−1

1 , ..., fp−1
qp−1

). In
fact, if it were, say S̃′ =

∑
α Sα (Sα linear syzygies of (fp−1

1 , ..., fp−1
qp−1

)), we set
ti,j = 0 for j 6= 0 in each member of the equality S̃′ =

∑
α Sα and, by taking off

the last index (a 0) of every variable and considering only the first lp−1 coordinates
of S and Sα, one would obtain that S would be generated by linear syzygies of
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(gp−1
1 , ..., gp−1

lp−1
) (observe that by setting ti,j = 0 for j 6= 0 in Sα and taking the first

lp−1 coordinates, we get a syzygy of (fp−1
1 , ..., fp−1

lp−1
)).

But S cannot be generated by linear syzygies by assumption.

The line bundle OP1×P1×P1(1, 1, 1) does not satisfy Property N4; precisely the
resolution, with the notation of Introduction, is

0→ S(−6)→ S(−4)9 → S(−3)16 → S(−2)9 → S → G→ 0.

This has been proved by Barcanescu and Manolache in [B-M] and can be seen also
by using the program Macaulay [B-S] (to see only that OP1×P1×P1(1, 1, 1) does
not satisfy Property N4, it is sufficient to use the autoduality of the resolution; see
[B-M]).

From this and from Proposition 7 we deduce that OP1×...×P1(1, ..., 1) (d times)
does not satisfy Property N4 for d ≥ 3. By also using Gallego-Purnapranja’s
Theorem 4, we deduce that, if a1, ..., ad are integer numbers with a1 ≤ a2 ≤ ... ≤ ad
and a1 = ... = ak = 1, the line bundle OP1×...×P1(a1, ..., ad) does not satisfy
Property N4 if k ≥ 3 and it does not satisfy Property N2ak+1+2ak+2−2 if d− k ≥ 2.

With the same argument as in the Remark in part II, Section 2 of [Gr1-2] we
deduce Corollary 8.
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