NILPOTENCY DEGREE OF COHOMOLOGY RINGS IN CHARACTERISTIC p

PHAM ANH MINH

(Communicated by Stephen D. Smith)

Dedicated to Professor Huỳnh Mủi on his sixtieth birthday

Abstract. Let p be an odd prime number. The purpose of this paper is to provide a p-group G whose mod-p cohomology ring has a nilpotent element $\xi \in H^*(G)$ satisfying $\xi^p \neq 0$.

1. Statement of the main result

For every p-group G, denote by $H^*(G)$ the mod-p cohomology algebra of G. We are now interested in the nilpotency degrees of elements of $H^*(G)$. For the case $p = 2$, in [1], [4], it was shown that, given any positive integer n, there exists a 2-group whose cohomology ring has elements of nilpotency degree $n + 1$. It was also noted in [1] that, for p odd, we did not have any example of elements of $H^*(G)$ having nilpotency degrees greater than p.

Recently, such an example was given in [8] for $p = 3$. In this case, G is chosen to be an extension of $E \times A$ by Z/p, where E is the extraspecial 3-group of order 3^3 and of exponent 3, and A the elementary abelian 3-group of rank 4.

The purpose of this paper is to generalize the result in [8] to the case of any odd prime p. Let $S_{p^2, p}$ be the Sylow subgroup of the symmetric group on p^2 letters (so $S_{p^2, p} = Z/p \wr Z/p$, the wreath product of Z/p and Z/p) and let Z be the center of $S_{p^2, p}$. Define $\mathfrak{R} = S_{p^2, p}/Z$ (so $\mathfrak{R} = E$ for $p = 3$) and let \mathfrak{A}_k be the elementary abelian p-group of rank $2k$. We shall prove

Theorem. For $k \geq 2p - 2$, there exists a p-group G given by a central extension $0 \rightarrow Z/p \rightarrow G \rightarrow \mathfrak{R} \times \mathfrak{A}_k \rightarrow 1$ whose mod-p cohomology ring has a nilpotent element $\xi \in H^2(G)$ satisfying $\xi^p \neq 0$.

We shall use the following notation. For homogeneous elements X, Y, \ldots of a graded ring R, $|X|$ denotes the degree of X and (X, Y, \ldots) the ideal of R generated by X, Y, \ldots. p is assumed from now on to be an arbitrary odd prime number. If S is a subset of a group G, then $\langle S \rangle$ denotes the subgroup of G generated by S. With some abuse of notation, for every $\zeta \in H^*(G)$ and for every subgroup K of G, we consider ζ as an element of $H^*(K)$ via the restriction map; also, for every extension T of G, ζ is considered as an element of $H^*(T)$ via the inflation map.
2. The groups \mathfrak{R} and \mathfrak{U}

Let \mathfrak{U} be the p-group of order p^{p+2} given by

$$\mathfrak{U} = \langle a, a_1, \ldots, a_{p+1} | a^p = a_{p+1} = \cdots = a_{p+1} = [a, a_1] = a_{p+1}^p \rangle = 1$$

Then \mathfrak{U} is a 2-generator p-group of maximal class and $\mathfrak{R} = \mathfrak{U}/\langle a_p, a_{p+1} \rangle$ (see e.g. [2, Section 4]). Set $\mathfrak{F} = \mathfrak{U}/\langle a_p, a_{p+1} \rangle, g_i = a_i(a_{p}, a_{p+1}) \in \mathfrak{R}, 1 \leq i \leq p - 1,$ and $K = \langle g_1, \ldots, g_{p-1} \rangle$. We then have extensions of groups

(1) $0 \rightarrow \mathbb{Z}/p \rightarrow \mathfrak{U} \rightarrow \mathfrak{F} \rightarrow 1$,

(2) $0 \rightarrow \mathbb{Z}/p \rightarrow \mathfrak{R} \rightarrow \mathfrak{F} \rightarrow 1$,

(3) $0 \rightarrow (\mathbb{Z}/p)^{p-1} \rightarrow K \rightarrow \mathfrak{R} \rightarrow \langle a \rangle \rightarrow 1$.

Let $x \in H^1(\langle a \rangle)$ be the dual of a and consider x as an element of $H^1(\mathfrak{R})$ via the inflation map. Define $x_1 \in H^1(\mathfrak{R})$ satisfying $x_1(g_1) = 1, x_1(a) = 0$ (x_1 is well-defined, as \mathfrak{R} is a 2-generator p-group and $\mathfrak{R} = \langle a, g_1 \rangle$). x, x_1 is then a basis of $H^1(\mathfrak{R})$. Set $y = \beta x, y_1 = \beta x_1$ with β the Bockstein homomorphism. Let w be the element of $H^2(\mathfrak{R})$ classifying the extension (\mathfrak{F}) and set $U = w + y_1$. We have

Lemma 1. (i) $U|_K = 0$;
(ii) $U^p + xy^{p-2} \cdot \beta U - y^{p-1} \cdot U = 0$;
(iii) $x \cdot U = xy_1$;
(iv) $U^p = y^{p-1}y_1$.

Proof. Set $f = p_1 (a_1)$. Since $f^p = (j(-1))$ and $p_2^{-1}(K)$ is abelian, $w|_K = -y_1$. Hence $U|_K = 0$. (ii) follows from [3] Remark 1 (see also [7] Theorem 1.1) and the fact that $U|_K = 0$.

Note that the term $E_2(\mathfrak{F})$ of the Hochschild-Serre spectral sequence corresponding to the extension (\mathfrak{F}) is of form

$$E_2(\mathfrak{F}) = H^*(\mathfrak{R}) \otimes H^*(j(\mathbb{Z}/p)).$$

Let w' be the element of $H^2(\mathfrak{F})$ classifying the extension (\mathfrak{U}) and let u be the element of $H^1(j(\mathbb{Z}/p))$ satisfying $d_2(u) = w$. Since $\langle a_p, a_{p+1} \rangle = p_1^{-1}(\text{Im } j)$ is of exponent p, w' restricts trivially on $j(\mathbb{Z}/p)$. So w' represents a non-zero element of $E_2^{2,0}(\mathfrak{F}) \oplus E_2^{1,1}(\mathfrak{F})$. Note that $X|_{\langle a, j(\mathbb{Z}/p) \rangle}$ (resp. $X|_{\langle a_i, j(\mathbb{Z}/p) \rangle}$) is a scalar multiple of y (resp. y_1), for any $X \in E_2^{2,0}(\mathfrak{F}) \subset \text{Im } \text{Inf}_F^{|x|}$. As $[a, a_p] = a_{p+1}$ and $[a_1, a_p] = 1$, it follows that w' represents a non-zero element θ of $E_2^{1,1}(\mathfrak{F})$ and $w'|_{\langle a, j(\mathbb{Z}/p) \rangle} \neq 0, w'|_{\langle f, j(\mathbb{Z}/p) \rangle} = 0$. So θ is a non-zero scalar multiple of $x \otimes u$. This means that $x d_2(u) = xw = 0$. Hence $x \cdot U = x(u + y_1) = xy_1$.

Finally, as

$$y \cdot U - x \cdot \beta U = \beta(x \cdot U) = \beta(xy_1) \quad \text{by (iii)} = yy_1,$$
we have, by (ii),
\[0 = U^p + xy^{p-2} \cdot \beta U - y^{p-1} \cdot U \]
\[= U^p + y^{p-2}(x \cdot \beta U - y \cdot U) \]
\[= U^p - y^{p-2} \cdot y y_1 \]
\[= U^p - y^{p-1} y_1. \]

The lemma is proved.

Remarks. 1. It is known that \(\text{Inf}_{\mathfrak{A}}^\mathfrak{A} : H^2(\mathfrak{A}) \to H^2(\mathfrak{A}_{p^2, p}) \) is surjective (this comes from the fact that \(\mathfrak{A}_{p^2, p} \) is a terminal \(p \)-group; see [3]). Furthermore, as \(H^*(\mathfrak{A}_{p^2, p}) \) is detected by elementary abelian subgroups ([9]) and \(U |_{(a)} = 0, U |_{K} = 0 \), it follows that \(\text{Inf}_{\mathfrak{A}}^\mathfrak{A}(U) = 0 \). Hence \(U \) is nothing other than the cohomology class classifying the central extension \(1 \to Z \to \mathfrak{A}_{p^2, p} \to \mathfrak{A} \to 1 \).

2. The group \(\mathfrak{U} \) can be obtained from algebraic number theory, as follows. Let \(\vartheta \) be a primitive \(p \)-th root of unity and let \(\mathbb{Z}_p \) be the ring of \(p \)-adic integers. Then
\[\mathbb{Z}_p[\vartheta] = \bigoplus_{j=0}^{p-2} \vartheta^j \mathbb{Z}_p. \]
Let \(\langle a \rangle \) be the cyclic group of order \(p \). Multiplication by \(\vartheta \) induces an action of \(\langle a \rangle \) on \(\mathbb{Z}_p[\vartheta] \), hence on \(\mathcal{Z} = \mathbb{Z}_p[\vartheta]/((\vartheta - 1)^{p+1}) \). We can check that the map
\[\{a, a_1, \ldots, a_{p+1}\} \to \langle a \rangle \times \mathcal{Z} \]
which maps \(a \) to \(a, a_i \) to \((\vartheta - 1)^{i-1}, 1 \leq i \leq p+1 \), can be extended to a homomorphism of groups from \(\mathfrak{U} \) to \(\langle a \rangle \times \mathcal{Z} \) which is bijective. So \(\mathfrak{U} \cong \langle a \rangle \times \mathcal{Z} \).

3. Proof of the Theorem

Pick a basis \(c_1, \ldots, c_{2k} \) of the elementary abelian \(p \)-group \(\mathfrak{A}_k \) of rank \(2k \). Let \(u_1, \ldots, u_{2k} \) be the basis of \(H^1(\mathfrak{A}_k) \), dual to that of \(\mathfrak{A}_k \). Define \(v_i = \beta u_i, 1 \leq i \leq 2k \).

Set \(G = \mathfrak{A} \rtimes \mathfrak{A}_k \). By Künneth formula,
\[H^*(G) = H^*(\mathfrak{A}) \otimes H^*(\mathfrak{A}_k) \]
\[= H^*(\mathfrak{A}) \otimes \Lambda[u_1, \ldots, u_{2k}] \otimes \mathbb{F}_p[v_1, \ldots, v_{2k}]. \]

Let
\[z = y + u_1 u_2 + \cdots + u_{2k-1} u_{2k}, \]
\[\alpha = u_1 u_2 + \cdots + u_{2k-1} u_{2k}, \]
\[\gamma = u_3 u_4 + \cdots + u_{2k-1} u_{2k} \]
be elements of \(H^*(G) \). Set \(\Lambda = \Lambda[u_1, \ldots, u_{2k}] \) and \(\Lambda' = \Lambda[u_3, \ldots, u_{2k}] \). For \(i \geq 0 \), let \(\Lambda_i \) be the degree \(i \)-part of \(\Lambda \). We have

Lemma 2. Let \(0 \neq X \) be a homogeneous element of \(H^*(G) \) and let \(n, k \) be positive integers.

(i) If \(n \leq \min(p - 1, k) \) and \(X \cdot \alpha^n = 0 \), then \(|X| \geq \min(2p - 2n, k - n + 1) \).
(ii) If \(X \cdot z = 0 \):
 (iia) \(|X| \geq \min(2p - 2, k) \);
 (iib) \(|X| > 2p - 1 \), provided that \(k \geq 2p - 2 \) and \(X \in (v_1, \ldots, v_{2k}) \).
Proof. (i) By induction on k. It obviously holds for $k = 1$. Assume that it holds for $k - 1$. Without loss of generality, we may assume that $X \in \Lambda$. If $n \leq k - 1$, then $0 = X \cdot \alpha^n = k! X \cdot u_1 \ldots u_2 k$ implies $|X| \geq 1$. We may then suppose that $n \leq k - 1$.

Write $X = X_1 + X_2 \cdot u_1 u_2 + X_3 \cdot u_1 + X_4 \cdot u_2$ with X_i homogeneous in A'. So $0 = X \cdot \alpha^n = X \cdot (\gamma + u_1 u_2)^n$ implies

(1) \[X_1 \cdot \gamma^n = 0, \]
(2) \[(nX_1 + X_2 \cdot \gamma) \cdot \gamma^{n-1} = 0, \]
(3) \[X_3 \cdot \gamma^n = X_4 \cdot \gamma^n = 0. \]

If $X_3 \neq 0$ or $X_4 \neq 0$, it follows from (3) and the inductive hypothesis that $\min(|X_3|, |X_4|) \geq \min(2p - 2n, k - n)$, hence

\[|X| = \min(|X_3|, |X_4|) + 1 \geq \min(2p - 2n + 1, k - n + 1). \]

So we may suppose that $X_3 = X_4 = 0$. By (2) and by the inductive hypothesis, $|nX_1 + X_2 \cdot \gamma| \geq \min(2p - 2n + 2, k - n + 1)$. Hence $|X| = |nX_1 + X_2 \cdot \gamma| \geq \min(2p - 2n, k - n + 1)$ if $nX_1 + X_2 \cdot \gamma \neq 0$.

By (1), $X_2 \cdot \gamma^{n+1} = 0$. By the inductive hypothesis, $|X_2| \geq \min(2p - 2n - 2, k - n - 1)$. Hence $|X| = |X_2| + 2 \geq \min(2p - 2n, k - n + 1)$. (i) is then proved.

(ii) Write $X = \sum_{i=0}^{m} X_i \cdot Y_i$ with $Y_i \in \Lambda_i, X_i \in H^*(\mathfrak{R}) \otimes \mathbb{F}_p[v_1, \ldots, v_{2k}]$ and $X_m \cdot Y_m \neq 0$. Then $X_m \cdot Y_m \cdot \alpha = 0$. By (i), it follows that $|X| = |X_m \cdot Y_m| \geq \min(2p - 2, k)$. (iia) is proved.

Suppose that $k \geq 2p - 2, |X| \leq 2p - 1$ and $X \in (v_1, \ldots, v_{2k})$. Fix i with $1 \leq i \leq 2k$ and write $X = v_i X' + X''$ with X'' free of v_i. Then $X' \cdot z = 0$. As $|X'| \leq 2p - 3$, it follows from (iia) that $X' = 0$. X is then free of v_i. Hence by repeating the argument, we see that X is free of v_1, \ldots, v_{2k}, a contradiction.

The lemma is proved.

Suppose from now on that $k \geq 2p - 2$. We have

Lemma 3. If X is homogeneous in $H^*(G)$ of degree $\leq 2p - 5$ and $X \cdot \beta z \in (z)$, then $X \in (z, \beta z)$.

Proof. Write $X \cdot \beta z = A \cdot z$ with A homogeneous in $H^*(G)$. Then $A \cdot \beta z \cdot z = 0$. As $|A \cdot \beta z| = |X| + 4 \leq 2p - 1$ and $A \cdot \beta z \in (v_1, \ldots, v_{2k})$, it follows from Lemma 2(ii) that $A \cdot \beta z = 0$. By [5] Lemma 2.1, $A \in (\beta z, u_1 \ldots u_{2k})$. So $A \in (\beta z)$, as $|A| \leq 2p - 4 < 2k$. Write $A = B \cdot \beta z$. We then have $(X - B \cdot z) \beta z = 0$. Again, by [5] Lemma 2.1, $X - B \cdot z \in (\beta z)$. Therefore $X \in (z, \beta z)$. The lemma is proved.

For every $1 \leq j \leq p - 1$, let B_j be a set of elements of Λ_{2j} such that the disjoint union $B_j \cup \{\alpha^j\}$ forms a basis of Λ_{2j}. We then have a decomposition

(4) \[H^*(\mathfrak{R}) \otimes \Lambda_{2j} = H^*(\mathfrak{R}) \otimes ((B_j) \oplus (\alpha^j)), 1 \leq j \leq p - 1. \]

For $1 \leq i < p - 1$ and for $0 \neq b \in \langle B_i \rangle, \mu \in \mathbb{Z}/p$, as $|b - \mu \alpha^i| = 2i < 2p - 2$, it follows from Lemma 2 that $(b - \mu \alpha^i) \cdot \alpha \neq 0$. The B_j’s can then be chosen such that, for every $1 \leq i < p - 1$,

(5) \[\{b \cdot \alpha | 0 \neq b \in \langle B_i \rangle \} \subset \langle B_{i+1} \rangle. \]

Lemma 4. $y^{p-1} y_i \notin (z, \beta z)$.

Lemma 5. There exists no element \(\eta \in E_{\alpha}^{2p-n,n-1} \), \(n \geq 3 \), satisfying \(d_n(\eta) = y^{p-1}y_1 \).

Proof. Suppose that \(\eta \) is an element of \(E_{2r}^{2p-2r,2r-1} \), \(r \geq 2 \), represented by \(X \otimes t^{r-1}s \in E_{2}^{2p-2r,2r-1} \). Then \(0 = d_2(X \otimes t^{r-1}s) = X \cdot z \otimes t^{r-1} \). So \(X \cdot z = 0 \). Since \(|X| = 2p - 2r \leq 2p - 4 \), \(X = 0 \) by Lemma 2. Hence \(0 = d_2(\eta) \neq y^{p-1}y_1 \).

Suppose now that \(\eta \in E_{2r+1}^{2p-2r-1,2r} \) is represented by \(X \otimes t^r \in E_{2}^{2p-2r-1,2r}, p-1 \geq r \geq 1 \). If \(r = 1 \), \(y_1^{p-1}y_2 \neq X \cdot \beta z = -d_3(X \otimes t) \) by Lemma 4. If \(r \geq 2 \), \(X \cdot \beta z \otimes t^{r-1} = d_3(X \otimes t^r) = 0 \) in \(E_3 \). So \(X \cdot \beta z \in (z) \). As \(|X| = 2p-2r-1 \leq 2p-5 \), \(X \in (z, \beta z) \) by Lemma 3. This implies \(X \otimes t^r = 0 \) in \(E_4 \) unless \(r = p-1 \) and \(X \in (\beta z) \). But \(r = p-1 \) also implies \(|X| = 2p-2r-1 = 1 \) and \(X \in (\beta z) \), hence \(X = 0 \). So \(0 = d_{2r+1}(\eta) \neq y^{p-1}y_1 \). The lemma is proved.

Proof of the Theorem. Set \(\xi = \text{Inf}_G^U(U) \). By Lemma 1, \(\xi^p = y^{p-1}y_1 \). Since \(\xi \) vanishes in \(H^*(G) \), \(y^p = -\alpha \) in \(H^*(G) \). So \(\xi^{2p} = y^{2p-2}y_1^2 = 0 \). Hence \(\xi \) is nilpotent. Besides, Lemmas 4 and 5 show that \(y^{p-1}y_1 \notin \text{Ker} \text{Inf}_G^U \), which means that \(\xi^p = y^{p-1}y_1 \neq 0 \). The Theorem is proved.
REFERENCES

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCES, UNIVERSITY OF HUE, DAII HOC KHOA HOC, HUE, VIETNAM

E-mail address: paminh@dng.vnn.vn