## A new invariant of stable equivalences of Morita type

HTML articles powered by AMS MathViewer

- by Zygmunt Pogorzały
- Proc. Amer. Math. Soc.
**131**(2003), 343-349 - DOI: https://doi.org/10.1090/S0002-9939-02-06553-X
- Published electronically: June 5, 2002
- PDF | Request permission

## Abstract:

It was proved in an earlier paper by the author that the Hochschild cohomology algebras of self-injective algebras are invariant under stable equivalences of Morita type. In this note we show that the orbit algebra of a self-injective algebra $A$ (considered as an $A$-$A$-bimodule) is also invariant under stable equivalences of Morita type, where the orbit algebra is the algebra of all stable $A$-$A$-bimodule morphisms from the non-negative Auslander-Reiten translations of $A$ to $A$.## References

- Hideto Asashiba,
*A covering technique for derived equivalence*, J. Algebra**191**(1997), no. 1, 382–415. MR**1444505**, DOI 10.1006/jabr.1997.6906 - Hideto Asashiba,
*The derived equivalence classification of representation-finite selfinjective algebras*, J. Algebra**214**(1999), no. 1, 182–221. MR**1684880**, DOI 10.1006/jabr.1998.7706 - Shi Ping Liu,
*On short cycles in a module category*, J. London Math. Soc. (2)**51**(1995), no. 1, 62–74. MR**1310722**, DOI 10.1112/jlms/51.1.62 - Michel Broué,
*Equivalences of blocks of group algebras*, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, pp. 1–26. MR**1308978**, DOI 10.1007/978-94-017-1556-0_{1} - Peter Gabriel,
*Auslander-Reiten sequences and representation-finite algebras*, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 1–71. MR**607140** - Dieter Happel,
*Triangulated categories in the representation theory of finite-dimensional algebras*, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR**935124**, DOI 10.1017/CBO9780511629228 - Dieter Happel,
*Hochschild cohomology of finite-dimensional algebras*, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) Lecture Notes in Math., vol. 1404, Springer, Berlin, 1989, pp. 108–126. MR**1035222**, DOI 10.1007/BFb0084073 - Alex Heller,
*The loop-space functor in homological algebra*, Trans. Amer. Math. Soc.**96**(1960), 382–394. MR**116045**, DOI 10.1090/S0002-9947-1960-0116045-4 - Otto Kerner,
*Minimal approximations, orbital elementary modules, and orbit algebras of regular modules*, J. Algebra**217**(1999), no. 2, 528–554. MR**1700513**, DOI 10.1006/jabr.1998.7815 - H. Lenzing,
*Wild canonical algebras and rings of automorphic forms*, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, pp. 191–212. MR**1308987** - Markus Linckelmann,
*Stable equivalences of Morita type for self-injective algebras and $p$-groups*, Math. Z.**223**(1996), no. 1, 87–100. MR**1408864**, DOI 10.1007/PL00004556 - Saunders Mac Lane,
*Homology*, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR**0156879** - Z. Pogorzały,
*Invariance of Hochschild cohomology algebras under stable equivalences of Morita type*, J. Math. Soc. Japan 53(2001), 913–918. - Z. Pogorzały,
*Left-right projective bimodules and stable equivalences of Morita type*, Colloq. Math. Vol.88 (2) (2001), 243-255. - Jeremy Rickard,
*Derived equivalences as derived functors*, J. London Math. Soc. (2)**43**(1991), no. 1, 37–48. MR**1099084**, DOI 10.1112/jlms/s2-43.1.37

## Bibliographic Information

**Zygmunt Pogorzały**- Affiliation: Faculty of Mathematics and Computer Science, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
- Email: zypo@mat.uni.torun.pl
- Received by editor(s): May 2, 2001
- Received by editor(s) in revised form: September 6, 2001
- Published electronically: June 5, 2002
- Communicated by: Martin Lorenz
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**131**(2003), 343-349 - MSC (2000): Primary 16D50; Secondary 16G20
- DOI: https://doi.org/10.1090/S0002-9939-02-06553-X
- MathSciNet review: 1933322

Dedicated: Dedicated to Professor Idun Reiten on the occasion of her sixtieth birthday