Correction to the paper “Duality and flat base change on formal schemes”
HTML articles powered by AMS MathViewer
- by Leovigildo Alonso Tarrío, Ana Jeremías López and Joseph Lipman
- Proc. Amer. Math. Soc. 131 (2003), 351-357
- DOI: https://doi.org/10.1090/S0002-9939-02-06558-9
- Published electronically: June 5, 2002
- PDF | Request permission
Abstract:
In §8.3 of our paper “Duality and Flat Base Change on Formal Schemes" some important results concerning localization and preservation of coherence by basic duality functors were based on the false statement that any closed formal subscheme of an open subscheme of the completion $\mathscr P$ of a relative projective space is an open subscheme of a closed formal subscheme of $\mathscr P$. In this note, the said results are provided with solid foundations.References
- Leovigildo Alonso Tarrío, Ana Jeremías López, and Joseph Lipman, Studies in duality on Noetherian formal schemes and non-Noetherian ordinary schemes, Contemporary Mathematics, vol. 244, American Mathematical Society, Providence, RI, 1999. MR 1716706, DOI 10.1090/conm/244
- B.Conrad, Deligne’s notes on Nagata Compactifications, item 5 on http://www-math.mit.edu/~dejong/#brian
- Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 0354654
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093
- William Heinzer and Christel Rotthaus, Formal fibers and complete homomorphic images, Proc. Amer. Math. Soc. 120 (1994), no. 2, 359–369. MR 1189544, DOI 10.1090/S0002-9939-1994-1189544-2
- Leovigildo Alonso Tarrío, Ana Jeremías López, and Joseph Lipman, Studies in duality on Noetherian formal schemes and non-Noetherian ordinary schemes, Contemporary Mathematics, vol. 244, American Mathematical Society, Providence, RI, 1999. MR 1716706, DOI 10.1090/conm/244
- W. Lütkebohmert, On compactification of schemes, Manuscripta Math. 80 (1993), no. 1, 95–111. MR 1226600, DOI 10.1007/BF03026540
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9
- Jean-Louis Verdier, Base change for twisted inverse image of coherent sheaves, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968) Oxford Univ. Press, London, 1969, pp. 393–408. MR 0274464
Bibliographic Information
- Leovigildo Alonso Tarrío
- Affiliation: Departamento de Álxebra, Facultade de Matemáticas, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- MR Author ID: 25070
- ORCID: 0000-0002-6896-0652
- Email: leoalonso@usc.es
- Ana Jeremías López
- Affiliation: Departamento de Álxebra, Facultade de Matemáticas, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- Email: jeremias@usc.es
- Joseph Lipman
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- Email: lipman@math.purdue.edu
- Received by editor(s): July 2, 2001
- Received by editor(s) in revised form: September 7, 2001
- Published electronically: June 5, 2002
- Additional Notes: The first two authors were partially supported by Spain’s DGESIC PB97-0530 research project. They thank the Mathematics Department of Purdue University for its hospitality and support.
The third author was partially supported by the National Security Agency. - Communicated by: Wolmer V. Vasconcelos
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 351-357
- MSC (2000): Primary 14F99; Secondary 13D99, 14B15, 32C37
- DOI: https://doi.org/10.1090/S0002-9939-02-06558-9
- MathSciNet review: 1933323