Knot modules and the Nakanishi index
HTML articles powered by AMS MathViewer
- by C. Kearton and S. M. J. Wilson
- Proc. Amer. Math. Soc. 131 (2003), 655-663
- DOI: https://doi.org/10.1090/S0002-9939-02-06582-6
- Published electronically: June 12, 2002
- PDF | Request permission
Abstract:
We examine the structure of the knot module of $9_{38}$ and show that the Nakanishi index of this knot is 2. The Nakanishi indices of $10_{69}$ and $10_{101}$ are also determined by means of the Fox-Smythe row class. Finally, we point out that the Nakanishi index is not additive over knot composition.References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- C. Batut, K. Belabas, D. Bernardi, H. Cohen, and M. Olivier, Userâs guide to pari/gp, available from http://www.parigp-home.de/.
- Johannes Buchmann, A subexponential algorithm for the determination of class groups and regulators of algebraic number fields, SĂ©minaire de ThĂ©orie des Nombres, Paris 1988â1989, Progr. Math., vol. 91, BirkhĂ€user Boston, Boston, MA, 1990, pp. 27â41. MR 1104698
- Richard H. Crowell and Ralph H. Fox, Introduction to knot theory, Graduate Texts in Mathematics, No. 57, Springer-Verlag, New York-Heidelberg, 1977. Reprint of the 1963 original. MR 0445489
- R. H. Fox and N. Smythe, An ideal class invariant of knots, Proc. Amer. Math. Soc. 15 (1964), 707â709. MR 165516, DOI 10.1090/S0002-9939-1964-0165516-2
- Jonathan A. Hillman, Blanchfield pairings with squarefree Alexander polynomial, Math. Z. 176 (1981), no. 4, 551â563. MR 611643, DOI 10.1007/BF01214764
- Akio Kawauchi, A survey of knot theory, BirkhÀuser Verlag, Basel, 1996. Translated and revised from the 1990 Japanese original by the author. MR 1417494
- C. Kearton, Classification of simple knots by Blanchfield duality, Bull. Amer. Math. Soc. 79 (1973), 952â955. MR 324706, DOI 10.1090/S0002-9904-1973-13274-4
- B. A. RozenfelâČd, M. P. ZamahovskiÄ, T. G. Orlovskaja, and I. N. Semenova, Quasisimple algebras, quasimatrices and spin representations of quasinoneuclidean motions, Izv. VysĆĄ. UÄebn. Zaved. Matematika 1969 (1969), no. 4 (83), 62â73 (Russian). MR 0246912
- W. B. Raymond Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, 1997. MR 1472978, DOI 10.1007/978-1-4612-0691-0
- I. Reiner and S. Ullom, A Mayer-Vietoris sequence for class groups, J. Algebra 31 (1974), 305â342. MR 349828, DOI 10.1016/0021-8693(74)90072-6
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of Math. (2) 76 (1962), 464â498. MR 143201, DOI 10.2307/1970369
- Edwin Weiss, Algebraic number theory, Chelsea Publishing Co., New York, 1976. Reprinting of the 1963 original. MR 0417112
Bibliographic Information
- C. Kearton
- Affiliation: Department of Mathematics, University of Durham, South Road, Durham DH1 3LE, England
- Email: Cherry.Kearton@durham.ac.uk
- S. M. J. Wilson
- Affiliation: Department of Mathematics, University of Durham, South Road, Durham DH1 3LE, England
- Email: S.M.J.Wilson@durham.ac.uk
- Received by editor(s): May 21, 2001
- Received by editor(s) in revised form: October 10, 2001
- Published electronically: June 12, 2002
- Communicated by: Ronald A. Fintushel
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 655-663
- MSC (2000): Primary 57M25; Secondary 57Q45
- DOI: https://doi.org/10.1090/S0002-9939-02-06582-6
- MathSciNet review: 1933359