PERFECT CLIQUES AND G_δ COLORINGS OF POLISH SPACES

WIESŁAW KUBIŚ

(Communicated by Carl G. Jockusch, Jr.)

Abstract. A coloring of a set X is any subset C of $[X]^N$, where $N > 1$ is a natural number. We give some sufficient conditions for the existence of a perfect C-homogeneous set, in the case where C is G_δ and X is a Polish space. In particular, we show that it is sufficient that there exist C-homogeneous sets of arbitrarily large countable Cantor-Bendixson rank. We apply our methods to show that an analytic subset of the plane contains a perfect 3-clique if it contains any uncountable k-clique, where k is a natural number or \aleph_0 (a set K is a k-clique in X if the convex hull of any of its k-element subsets is not contained in X).

1. Introduction

For a set X and natural number N, $[X]^N$ denotes the collection of all N-element subsets of X. A (two-color) coloring of X is (represented by) a set $C \subset [X]^N$. We identify $[X]^N$ with a suitable subspace of the product X^N. We are interested in the following problem: find sufficient conditions for the existence of a perfect C-homogeneous set $P \subset X$, where X is a Polish space and $C \subset [X]^N$ is open (or more generally G_δ). A natural example of this problem is the following: let $X \subset \mathbb{R}^N$ be closed and $C = \{s \in [X]^k : \text{conv } s \not\subset X\}$. Then C is open and a C-homogeneous set is called a k-clique in X. It is known (see [3]) that there exists a closed set $X \subset \mathbb{R}^N$ such that X is not a countable union of convex sets but every k-clique in X is countable for every $k < \omega$. On the other hand, it is proved in [3] that if a closed set $X \subset \mathbb{R}^N$ contains an uncountable k-clique for some k, then it contains a perfect 3-clique.

We prove that if C is a G_δ coloring of a Polish space and there are no perfect C-homogeneous sets, then there is a countable ordinal γ such that the Cantor-Bendixson rank of every C-homogeneous set is $< \gamma$. In the context of cliques, this strengthens the result of Kojman [2] (see Theorem 3.1(a) below). From our result it follows that if C is a G_δ coloring of an analytic space, then either there exists a perfect C-homogeneous set or all C-homogeneous sets are countable. This is not true for F_σ colorings: a result of Shelah [4] states that consistently there exist F_σ 2-colorings with uncountable but not perfect homogeneous sets. Concerning cliques, we investigate analytic subsets of the plane. We prove that if an analytic set $X \subset \mathbb{R}^2$ contains an uncountable \aleph_0-clique, then X contains also a perfect 3-clique.

Received by the editors August 20, 2001 and, in revised form, October 1, 2001.

2000 Mathematics Subject Classification. Primary 52A37, 54H05; Secondary 03E02, 52A10.

Key words and phrases. Open (G_δ) coloring, perfect homogeneous set, clique.
1.1. **Notation.** Any subset of $[X]^N$ is called a coloring (or an N-coloring) of X. We write $\neg C$ instead of $[X]^N \setminus C$. A set $S \subset X$ is C-homogeneous if $[A]^N \subset C$. We identify $[X]^N$ with the subspace of X^N consisting of all N-tuples (x_0, \ldots, x_{N-1}) with $x_i \neq x_j$ for $i \neq j$. Thus we may consider topological properties of colorings. If $f : X \rightarrow Y$ is a function, then we write $f[S]$ for the image of a set $S \subset X$ and $f(s)$ for the value at a point $s \in X$. By a perfect set we mean a compact, nonempty, topological space with no isolated points.

2. On Colorings

First we recall a simple result on open 2-colorings of analytic spaces which can be found in Todorcević-Farah's book [5] p. 81].

Proposition 2.1. Let X be an analytic space and let $C \subset [X]^2$ be open. Then either there exists a perfect C-homogeneous set or else X is a countable union of $\neg C$-homogeneous sets, i.e. $X = \bigcup_{n \in \omega} A_n$ where $[A_n]^2 \cap C = \emptyset$ for every $n \in \omega$.

The above result is no longer valid when we replace the word “open” with “closed”; see [3] p. 83]. Also, the above proposition cannot be strengthened for colorings of triples: there exists a clopen 3-coloring of ω such that no uncountable homogeneous sets either of this color or of its complement; see Blass' example [1]. In Blass' example, the Cantor-Bendixson rank of any homogeneous set is at most 1. Below we show that in this situation there always exists a countable ordinal which bounds the Cantor-Bendixson ranks of all homogeneous sets. In fact this is true for G_δ colorings.

For a topological space Y and an ordinal α we denote by $Y^{(\alpha)}$ the α-derivative of Y; the Cantor-Bendixson rank of Y is the minimal ordinal γ such that $Y^{(\gamma+1)}$ is empty.

Theorem 2.2. Let C be a G_δ N-coloring of a Polish space X. If for every countable ordinal γ there exists a C-homogeneous set of the Cantor-Bendixson rank $\geq \gamma$, then X contains a perfect C-homogeneous set.

Proof. Fix a countable base \mathcal{B} in X and fix a complete metric on X. Let $C = \bigcap_{n \in \omega} C_n$, where each C_n is open and $C_{n+1} \subset C_n$. We will construct a tree of open sets

$$T = \{u_s : s \in 2^{<\omega}\}$$

with the following properties:

(i) $cl u_{s \upharpoonright i} \subset u_s$, $cl u_s \cap cl u_t = \emptyset$ if s, t are incompatible and $diam(u_s) < 2^{-\text{length}(s)}$;

(ii) if $k < \omega$ and $s_0, \ldots, s_{N-1} \in 2^k$ are pairwise distinct, then $\{x_0, \ldots, x_{N-1}\} \in C_k$ whenever $x_i \in u_{s_i}$, $i \in N$;

(iii) if $k < \omega$, then for each $\gamma < \omega_1$ there exists a C-homogeneous set $P = P_k, \gamma$ such that $P(\gamma) \cap u_s \neq \emptyset$ for each $s \in 2^k$.

We start with $u_0 = X$. Suppose that u_s has been defined for all $s \in 2^{\leq k}$. Fix $\gamma < \omega_1$ and consider $P = P_{k, \gamma+1}$, as in (iii). Then for each $s \in 2^k$ the set $P(\gamma) \cap u_s$ is infinite. Fix $S \subset P(\gamma)$ such that $|S|/|u_s| = 2$ for each $s \in 2^k$. Next, enlarge each $x \in S \cap u_s$ to a small open set $v_x \in \mathcal{B}$, contained in u_s, such that $\{y_0, \ldots, y_{N-1}\} \in C_{k+1}$ whenever y_i are taken from pairwise distinct v_x's. This is possible, because C_{k+1} is open. Let $\varphi(\gamma) = \{v_x : x \in S\}$. This defines a mapping $\varphi : \omega_1 \rightarrow |\mathcal{B}|^{<\omega}$. As \mathcal{B} is countable,
there is unbounded $F \subset \omega_1$ such that $\varphi \upharpoonright F$ is constant, say $\{v_{\alpha^{-1}} : s \in 2^k, i < 2\}$, where $v_{\alpha^{-1}} \in u_\varphi$. Set $v_{\alpha^{-1}} = v_{\alpha^{-1}}$. Observe that (i) holds if we let v_x's be small enough. Also (ii) holds, by the definition of v_x's. Finally, (iii) holds, because $P_{k,\gamma+1} \cap u_\varphi \neq \emptyset$ for $t \in 2^{k+1}$ whenever $\gamma \in F$. By (ii) the perfect set obtained from this construction is C-homogeneous.

Using the above theorem we obtain the following corollary which, for the case of 2-colorings of Polish spaces, was mentioned by Shelah [3, Remark 1.14]:

Corollary 2.3. Let $1 \leq N < \omega$ and let C be a G_δ N-coloring of an analytic space X. If there exists an uncountable C-homogeneous set, then there exists also a perfect one.

Proof. Let $f : \omega^\omega \to X$ be a continuous surjection and define $C' = \{s \in [\omega^\omega]^2 : f[s] \in C\}$. If $K \subset X$ is C-homogeneous and $K = f[K']$ where $f \upharpoonright K'$ is one-to-one, then K' is C'-homogeneous. If K is uncountable then so is K' and by Theorem 2.2 we get a perfect set $P \subset \omega^\omega$ which is C'-homogeneous. Then $f \upharpoonright P$ is one-to-one and hence $f[P]$ is a perfect C-homogeneous set.

3. Applications to Convexity

Let $X \subset E$, where E is a real vector space. A subset K of X is a k-clique (k can be a cardinal or just a natural number; we will use this notion for $k < \omega$ and $k = \aleph_0$) if $\text{conv} S \not\subset X$ whenever $S \in [K]^k$. If E is finite-dimensional and $k > \dim E$, then we can define the notion of a strong k-clique replacing $\text{conv} S$ by $\text{int} \text{conv} S$ in the definition. A finite set $S \subset X$ is (strongly) defected in X if $\text{conv} S \not\subset X$ ($\text{int} \text{conv} S \not\subset X$). It is clear that the relation of strong defectedness is open and defectedness is open provided that X is closed.

Applying the results of the previous section we get the following:

Theorem 3.1. (a) Let X be a closed set in a Polish linear space and let $N < \omega$. If X does not contain a perfect N-clique, then all N-cliques in X are countable. Moreover, there exists an ordinal $\gamma < \omega_1$ which bounds the Cantor-Bendixson ranks of all N-cliques in X.

(b) Let X be an analytic subset of \mathbb{R}^m. If $m < N < \omega$ and X contains an uncountable strong N-clique, then X contains also a perfect one.

Theorem 3.1(a) was proved, under the stronger assumption that X is a countable union of convex sets, by Kojman in [2].

In [3] we proved, in particular, that in a closed planar set either all cliques are countable or there exists a perfect 3-clique. Here we prove the same for analytic sets, namely:

Theorem 3.2. Let $X \subset \mathbb{R}^2$ be analytic and assume that X contains an uncountable \aleph_0-clique. Then either X contains a perfect strong 3-clique or else, for some line L, $X \cap L$ contains a perfect 2-clique. In particular X contains a perfect 3-clique.

Proof. Fix a continuous function $f : \omega^\omega \to X$ onto X and fix an uncountable \aleph_0-clique $K \subset X$. We may assume that every line contains only countably many points of L; otherwise, for some line L, $X \cap L$ contains an uncountable \aleph_0-clique, so it contains a perfect 2-clique (Proposition 2.4). Fix uncountable $K' \subset \omega^\omega$ such that $f \upharpoonright K'$ is a bijection onto K.

A finite collection \(\{u_0, \ldots, u_{k-1}\} \) of open subsets of \(\omega^\omega \) will be called relevant if each \(u_i \) contains uncountably many points of \(K' \), \(\operatorname{cl} u_i \cap \operatorname{cl} u_j = \emptyset \) whenever \(i < j < k \) and int conv\{\(f(x_0), f(x_1), f(x_2) \)\} \(\subseteq X \) whenever \(x_0, x_1, x_2 \) are taken from pairwise distinct \(u_i \)'s. To find a perfect strong 3-clique in \(X \), it suffices to construct a perfect tree of open sets in \(\omega^\omega \) with relevant levels. If \(P \) is a perfect set obtained from such a tree, then \(f \upharpoonright P \) is one-to-one and \(f[P] \) is a perfect strong 3-clique.

Suppose that we have a relevant collection \(\{u_0, \ldots, u_k\} \). We have to show that it is possible to split each \(u_i \) to obtain again a relevant collection. We will split \(u_k \). Let \(L = K' \cap u_k \) and pick \(y_i \in u_i \) for \(i < k \). Define \(c_i : [L]^2 \to 2 \) by letting \(c_i(x_0, x_1) = 1 \) iff \(\operatorname{conv}\{f(x_0), f(x_1), f(y_i)\} \not\subseteq X \). Observe that there are no infinite \(c_i \)-homogeneous sets of color 0: if \(S \subseteq L \) is infinite, then, by Carathéodory’s theorem, there is \(s \in [S]^3 \) such that \(f[S] \) is defected in \(X \) (because \(f[S] \) is defected) and hence for some \(x_0, x_1, x_2 \in S \) we have \(\operatorname{conv}\{f(x_0), f(x_1), f(y_i)\} \not\subseteq X \), because \(\operatorname{conv} T \subseteq \bigcup_{x, y \in T} \operatorname{conv}\{x, y, p\} \) for \(T \subseteq \mathbb{R}^2, p \in \mathbb{R}^2 \). Using \(k \) times the theorem of Dushnik-Miller we obtain uncountable \(L' \subseteq L \) which is \(c_i \)-homogeneous of color 1 for \(i < k \). Shrinking \(L' \) we may assume that each nonempty open subset of \(L' \) is uncountable. Now choose disjoint open sets \(v_0, v_1 \) with \(\operatorname{cl} v_j \cap u_k \) and \(v_j \cap L' \neq \emptyset \) for \(j < 2 \). To finish the proof we need the following geometric property of the plane:

Claim 3.3. Let \(A, B \subseteq X \subseteq \mathbb{R}^2 \) and \(c \subseteq \mathbb{R}^2 \) be such that \(A, B \) are uncountable, each line contains countably many points of \(A \cup B \) and \(\operatorname{conv}\{a, b, c\} \subseteq X \) whenever \(a \in A, b \in B \). Then there are \(a_0 \in A, b_0 \in B \) such that \(\operatorname{int conv}\{a_0, b_0, c\} \not\subseteq X \).

Proof. Suppose that this is not true. Observe that, replacing \(A \) and \(B \) if necessary, we may assume that for some \(b_0 \in B, [a, b_0] \cup [a, c] \not\subseteq X \) whenever \(a \in A \). Indeed, if \([b, c] \subseteq X \) for some \(b \in B \), then we take \(b_0 = b \), otherwise we take any \(a_0 \in A \) and we replace \(A \) and \(B \). Now, without loss of generality, we may assume that \(b_0 = (-1, 0), c = (1, 0) \) and \(A \) is contained in \((-1, 1) \times (0, 1) \). Now, if some vertical line contains two elements of \(A \), then we are done: we take \(a_0 \in A \) such that some \(a_1 \in A \) is below \(a_0 \); then the relative interiors of segments \([b_0, a_1], [c, a_1]\) are contained in the interior of \(\operatorname{conv}\{a_0, b_0, c\} \).

Assume that each vertical line contains at most one element of \(A \). As \(A \) is uncountable, there is \(a_1 \in A \) such that arbitrarily close to \(a_1 \) there are uncountably many points both on the left and the right side of \(a_1 \). Suppose now that e.g. \(\{b_0, a_1\} \) is defected in \(X \). As \([b_0, a_1]\) contains only countably many points of \(A \), we can find \(a_2 \in A \) which is close enough to \(a_1 \), on the left side of \(a_1 \) and not in \([b_0, a_1]\). If \(a_2 \) is below \([b_0, a_1]\), then we can set \(a_0 = a_1 \), otherwise we can set \(a_0 = a_2 \).

Let \(i = 0 \). Using Claim 3.3 for \(A = f[v_0 \cap L'], B = f[v_1 \cap L'] \) and \(c = f(y_j) \) we get \(x_j \in v_j \) such that \(\operatorname{int conv}\{f(x_0), f(x_1), f(y_i)\} \not\subseteq X \). By continuity, shrink \(v_0, v_1 \) and enlarge \(y_i \) to an open set \(u_i' \subset u_i \) such that each triple selected from \(f[v_0] \times f[v_1] \times f(u_i') \) is strongly defected in \(X \). Repeat the same argument for each \(i < k \), obtaining a relevant collection \(\{u_0', \ldots, u_{k-1}', v_0', v_1'\} \) which realizes the splitting of \(u_k \). This completes the proof.

References

Department of Mathematics, University of Silesia, Katowice, Poland

Current address: Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel

E-mail address: kubis@math.bgu.ac.il