Algebraic groups over finite fields, a quick proof of Lang’s theorem
HTML articles powered by AMS MathViewer
- by Peter Müller
- Proc. Amer. Math. Soc. 131 (2003), 369-370
- DOI: https://doi.org/10.1090/S0002-9939-02-06591-7
- Published electronically: May 17, 2002
- PDF | Request permission
Abstract:
We give an easy proof of Lang’s theorem about the surjectivity of the Lang map $g\mapsto g^{-1}F(g)$ on a linear algebraic group defined over a finite field, where $F$ is a Frobenius endomorphism.References
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841, DOI 10.1017/CBO9781139172417
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR 632835
- Robert Steinberg, On theorems of Lie-Kolchin, Borel, and Lang, Contributions to algebra (collection of papers dedicated to Ellis Kolchin), Academic Press, New York, 1977, pp. 349–354. MR 0466336
Bibliographic Information
- Peter Müller
- Affiliation: IWR, Universität Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
- Email: Peter.Mueller@iwr.uni-heidelberg.de
- Received by editor(s): August 23, 2001
- Received by editor(s) in revised form: September 26, 2001
- Published electronically: May 17, 2002
- Communicated by: Stephen D. Smith
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 369-370
- MSC (2000): Primary 20G40
- DOI: https://doi.org/10.1090/S0002-9939-02-06591-7
- MathSciNet review: 1933326