Fully transitive $p$-groups with finite first Ulm subgroup
HTML articles powered by AMS MathViewer
- by Agnes T. Paras and Lutz StrĂĽngmann
- Proc. Amer. Math. Soc. 131 (2003), 371-377
- DOI: https://doi.org/10.1090/S0002-9939-02-06593-0
- Published electronically: June 3, 2002
- PDF | Request permission
Abstract:
An abelian $p$-group $G$ is called (fully) transitive if for all $x,y\in G$ with $U_G(x)=U_G(y)$ ($U_G(x)\leq U_G(y)$) there exists an automorphism (endomorphism) of $G$ which maps $x$ onto $y$. It is a long-standing problem of A. L. S. Corner whether there exist non-transitive but fully transitive $p$-groups with finite first Ulm subgroup. In this paper we restrict ourselves to $p$-groups of type $A$, this is to say $p$-groups satisfying $\mathrm {Aut}(G)\upharpoonright _{ p^{\omega }G} = U(\mathrm {End}(G) \upharpoonright _{p^{\omega }G})$. We show that the answer to Corner’s question is no if $p^{\omega }G$ is finite and $G$ is of type $A$.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487, DOI 10.1007/978-1-4612-4418-9
- D. Carroll, “Transitivity properties in abelian groups", doctoral thesis, Univ. Dublin, 1992.
- D. Carroll and B. Goldsmith, On transitive and fully transitive abelian $p$-groups, Proc. Roy. Irish Acad. Sect. A 96 (1996), no. 1, 33–41. MR 1644628
- A. L. S. Corner, The independence of Kaplansky’s notions of transitivity and full transitivity, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 15–20. MR 393280, DOI 10.1093/qmath/27.1.15
- Steve Files and Brendan Goldsmith, Transitive and fully transitive groups, Proc. Amer. Math. Soc. 126 (1998), no. 6, 1605–1610. MR 1451800, DOI 10.1090/S0002-9939-98-04330-5
- Walter Leighton and W. T. Scott, A general continued fraction expansion, Bull. Amer. Math. Soc. 45 (1939), 596–605. MR 41, DOI 10.1090/S0002-9904-1939-07046-8
- B. Goldsmith, On endomorphism rings of nonseparable abelian $p$-groups, J. Algebra 127 (1989), no. 1, 73–79. MR 1029403, DOI 10.1016/0021-8693(89)90274-3
- Phillip Griffith, Transitive and fully transitive primary abelian groups, Pacific J. Math. 25 (1968), 249–254. MR 230816
- G. Hennecke, “Transitivitätseigenschaften abelscher $p$-Gruppen", doctoral thesis, Essen University, 1999.
- Paul Hill, On transitive and fully transitive primary groups, Proc. Amer. Math. Soc. 22 (1969), 414–417. MR 269735, DOI 10.1090/S0002-9939-1969-0269735-0
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Bernard R. McDonald, Finite rings with identity, Pure and Applied Mathematics, Vol. 28, Marcel Dekker, Inc., New York, 1974. MR 0354768
- Charles Megibben, Large subgroups and small homomorphisms, Michigan Math. J. 13 (1966), 153–160. MR 195939
- K. Shoda, “Uber die Automorphismen einer endlichen Abelschen Gruppe", Math. Ann. (1928) 674–686.
Bibliographic Information
- Agnes T. Paras
- Affiliation: Department of Mathematics, University of the Philippines at Diliman, 1101 Quezon City, Philippines
- Email: agnes@math01.cs.upd.edu.ph
- Lutz StrĂĽngmann
- Affiliation: Fachbereich 6, Mathematik, University of Essen, 45117 Essen, Germany
- Email: lutz.struengmann@uni-essen.de
- Received by editor(s): August 9, 2001
- Received by editor(s) in revised form: September 27, 2001
- Published electronically: June 3, 2002
- Additional Notes: The first author was supported by project No. G-0545-173,06/97 of the German-Israeli Foundation for Scientific Research & Development
The second author was supported by the Graduiertenkolleg Theoretische und Experimentelle Methoden der Reinen Mathematik of Essen University - Communicated by: Stephen D. Smith
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 371-377
- MSC (2000): Primary 20K01, 20K10, 20K30
- DOI: https://doi.org/10.1090/S0002-9939-02-06593-0
- MathSciNet review: 1933327