A simple proof for the finiteness of GIT-quotients
HTML articles powered by AMS MathViewer
- by Alexander Schmitt
- Proc. Amer. Math. Soc. 131 (2003), 359-362
- DOI: https://doi.org/10.1090/S0002-9939-02-06599-1
- Published electronically: June 3, 2002
- PDF | Request permission
Abstract:
Let $G\times X\longrightarrow X$ be an action of the reductive group $G$ on the projective scheme $X$. For every linearization $\sigma$ of this action in an ample line bundle, there is an open set $X_\sigma ^{\mathrm {ss}}$ of $\sigma$-semistable points. We provide an elementary and geometric proof for the fact that there exist only finitely many open sets of the form $X_\sigma ^{\mathrm {ss}}$. This observation was originally due to Białynicki-Birula and Dolgachev and Hu.References
- A. Białynicki-Birula, Finiteness of the number of maximal open subsets with good quotients, Transform. Groups 3 (1998), no. 4, 301–319. MR 1657520, DOI 10.1007/BF01234530
- Andrzej Białynicki-Birula and Andrew John Sommese, Quotients by $\textbf {C}^{\ast }$ and $\textrm {SL}(2,\textbf {C})$ actions, Trans. Amer. Math. Soc. 279 (1983), no. 2, 773–800. MR 709583, DOI 10.1090/S0002-9947-1983-0709583-X
- Igor V. Dolgachev and Yi Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998), 5–56. With an appendix by Nicolas Ressayre. MR 1659282
- David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602
- Ch. Okonek, A. Schmitt, and A. Teleman, Master spaces for stable pairs, Topology 38 (1999), no. 1, 117–139. MR 1644079, DOI 10.1016/S0040-9383(98)00006-8
- Michael Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), no. 3, 691–723. MR 1333296, DOI 10.1090/S0894-0347-96-00204-4
Bibliographic Information
- Alexander Schmitt
- Affiliation: Universität GH Essen, FB6 Mathematik & Informatik, D-45117 Essen, Germany
- MR Author ID: 360115
- ORCID: 0000-0002-4454-1461
- Received by editor(s): April 17, 2001
- Received by editor(s) in revised form: September 17, 2001
- Published electronically: June 3, 2002
- Communicated by: Michael Stillman
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 359-362
- MSC (1991): Primary 14L24, 14L30
- DOI: https://doi.org/10.1090/S0002-9939-02-06599-1
- MathSciNet review: 1933324