A trace formula for isometric pairs

Author:
Rongwei Yang

Journal:
Proc. Amer. Math. Soc. **131** (2003), 533-541

MSC (2000):
Primary 47A13

DOI:
https://doi.org/10.1090/S0002-9939-02-06687-X

Published electronically:
June 5, 2002

MathSciNet review:
1933344

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that for every isometry , This fact for the shift operator is a basis for many important developments in operator theory and topology. In this paper we prove an analogous formula for a pair of isometries , namely

where is the complete anti-symmetric sum and is the Fredholm index of the pair . The major tool is what we call the

*fringe*operator. Two examples are considered.

**[ACD]**O. Agrawal, D. N. Clark and R. G. Douglas,*Invariant subspaces in the polydisk*, Pac. J. Math., 121(1986), 1-11. MR**87b:46055****[At]**M. F. Atiyah,*K-theory*, W. A. Benjamin Inc., New York, Amsterdam, 1967. MR**36:7130****[BCL]**C. Berger, L. Coburn, A. Lebow,*Representation and index theory for**-algebras generated by commuting isometries*, J. Functional Analysis, 27(1978), No. 1. MR**57:7251****[BDF]**L. G. Brown, R. G. Douglas and P. A. Fillmore,*Extensions of**-algebras and**-homology*, Ann. of Math. (2) 105 (1977), no. 2, 265-324. MR**56:16399****[CP]**R. W. Carey and J. D. Pincus,*On local index and the cocycle property for Lefschetz numbers*, Oper. Theory: Adv. Appl., 29 (1988), 45-86. MR**89m:47007****[Cu]**R. E. Curto,*Fredholm and invertible n-tuples of operators. The deformation problem*, Trans. A.M.S., 266 (1981), 129-159. MR**82g:47010****[DF]**R. G. Douglas and C. Foias,*A classification of multi-isometries*, preprint.**[Do]**R. G. Douglas,*Banach algebra techniques in operator theory*, Second edition, Graduate Texts in Mathematics, 179, Springer-Verlag, New York, 1998. MR**99c:47001****[DV]**R. G. Douglas and D. Voiculescu,*On the smoothness of sphere extentions*, J. Oper. Theory, 6 (1981), 103-111. MR**83h:46080****[GM]**P. Ghatage and V. Mandrekar,*On Beurling type invariant subspaces of**and their equivalence*, J. Operator Theory, 20 (1988), No. 1, 83-89. MR**90i:47005****[GS]**D. Gasper and N. Suciu,*Intertwining properties of isometric semigroups and Wold type decompositions*, Operator Theory: Adv. and Appl., 24 (1987), 183-193.**[HH]**J. W. Helton and R. Howe,*Traces of commutators of integral operators*, Acta. Math., 135 (1975), No. 3-4, 271-305. MR**55:11106****[Ho]**L. Hörmander,*The Weyl calculus of pseudo-differential operators*, Acta. Math., 32 (1979), 359-443. MR**80j:47060****[Su]**I. Suciu,*On the semi-groups of isometries*, studia Math., 30 (1968), 101-110. MR**37:4671****[Ya1]**R. Yang,*BCL index and Fredholm tuples*, Proc. A.M.S, Vol. 127 (1999), No. 8, 2385-2393. MR**99j:47013****[Ya2]**R. Yang,*The Berger-Shaw theorem in the Hardy module over the bidisk*, J. Oper. Theory, 42 (1999), 379-404. MR**2000h:47040****[Ya3]**R. Yang,*Operator theory in the Hardy space over the bidisk (III)*, J. of Funct. Anal., 186 (2001), 521-545.**[Ya4]**R. Yang,*Beurling's phenomenon in two variables*, preprint.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47A13

Retrieve articles in all journals with MSC (2000): 47A13

Additional Information

**Rongwei Yang**

Affiliation:
Department of Mathematics, Arizona State University, Tempe, Arizona 85287

Address at time of publication:
Department of Mathematics and Statistics, State University of New York at Albany, Albany, New York 12222

Email:
ryang@math.la.asu.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06687-X

Received by editor(s):
March 20, 2001

Received by editor(s) in revised form:
September 25, 2001

Published electronically:
June 5, 2002

Additional Notes:
The author was partially supported by a grant from the National Science Foundation (DMS 9970932)

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2002
American Mathematical Society