A trace formula for isometric pairs
HTML articles powered by AMS MathViewer
- by Rongwei Yang
- Proc. Amer. Math. Soc. 131 (2003), 533-541
- DOI: https://doi.org/10.1090/S0002-9939-02-06687-X
- Published electronically: June 5, 2002
- PDF | Request permission
Abstract:
It is well known that for every isometry $V$, $tr[V^{*},\ V]=-ind(V).$ This fact for the shift operator is a basis for many important developments in operator theory and topology. In this paper we prove an analogous formula for a pair of isometries $(V_{1},\ V_{2})$, namely \[ tr[V_{1}^{*},V_{1},V_{2}^{*},V_{2}]=-2ind(V_{1}, V_{2}),\] where $[V_{1}^{*},V_{1},V_{2}^{*},V_{2}]$ is the complete anti-symmetric sum and $ind(V_{1}, V_{2})$ is the Fredholm index of the pair $(V_{1},\ V_{2})$. The major tool is what we call the fringe operator. Two examples are considered.References
- O. P. Agrawal, D. N. Clark, and R. G. Douglas, Invariant subspaces in the polydisk, Pacific J. Math. 121 (1986), no. 1, 1–11. MR 815027
- M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR 0224083
- C. A. Berger, L. A. Coburn, and A. Lebow, Representation and index theory for $C^*$-algebras generated by commuting isometries, J. Functional Analysis 27 (1978), no. 1, 51–99. MR 0467392, DOI 10.1016/0022-1236(78)90019-8
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
- R. W. Carey and J. D. Pincus, On local index and the cocycle property for Lefschetz numbers, Topics in operator theory and interpolation, Oper. Theory Adv. Appl., vol. 29, Birkhäuser, Basel, 1988, pp. 45–86. MR 945003
- Raul E. Curto, Fredholm and invertible $n$-tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), no. 1, 129–159. MR 613789, DOI 10.1090/S0002-9947-1981-0613789-6
- R. G. Douglas and C. Foias, A classification of multi-isometries, preprint.
- Ronald G. Douglas, Banach algebra techniques in operator theory, 2nd ed., Graduate Texts in Mathematics, vol. 179, Springer-Verlag, New York, 1998. MR 1634900, DOI 10.1007/978-1-4612-1656-8
- R. G. Douglas and Dan Voiculescu, On the smoothness of sphere extensions, J. Operator Theory 6 (1981), no. 1, 103–111. MR 637004
- P. Ghatage and V. Mandrekar, On Beurling type invariant subspaces of $L^2(\textbf {T}^2)$ and their equivalence, J. Operator Theory 20 (1988), no. 1, 83–89. MR 972182
- D. Gasper and N. Suciu, Intertwining properties of isometric semigroups and Wold type decompositions, Operator Theory: Adv. and Appl., 24 (1987), 183-193.
- J. William Helton and Roger E. Howe, Traces of commutators of integral operators, Acta Math. 135 (1975), no. 3-4, 271–305. MR 438188, DOI 10.1007/BF02392022
- L. Hörmander, The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math. 32 (1979), no. 3, 360–444. MR 517939, DOI 10.1002/cpa.3160320304
- I. Suciu, On the semi-groups of isometries, Studia Math. 30 (1968), 101–110. MR 229093, DOI 10.4064/sm-30-1-101-110
- Rongwei Yang, BCL index and Fredholm tuples, Proc. Amer. Math. Soc. 127 (1999), no. 8, 2385–2393. MR 1605949, DOI 10.1090/S0002-9939-99-04895-9
- Rongwei Yang, The Berger-Shaw theorem in the Hardy module over the bidisk, J. Operator Theory 42 (1999), no. 2, 379–404. MR 1717024
- R. Yang, Operator theory in the Hardy space over the bidisk (III), J. of Funct. Anal., 186 (2001), 521–545.
- R. Yang, Beurling’s phenomenon in two variables, preprint.
Bibliographic Information
- Rongwei Yang
- Affiliation: Department of Mathematics, Arizona State University, Tempe, Arizona 85287
- Address at time of publication: Department of Mathematics and Statistics, State University of New York at Albany, Albany, New York 12222
- Email: ryang@math.la.asu.edu
- Received by editor(s): March 20, 2001
- Received by editor(s) in revised form: September 25, 2001
- Published electronically: June 5, 2002
- Additional Notes: The author was partially supported by a grant from the National Science Foundation (DMS 9970932)
- Communicated by: Joseph A. Ball
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 533-541
- MSC (2000): Primary 47A13
- DOI: https://doi.org/10.1090/S0002-9939-02-06687-X
- MathSciNet review: 1933344