A lower bound for sums of eigenvalues of the Laplacian
HTML articles powered by AMS MathViewer
- by Antonios D. Melas
- Proc. Amer. Math. Soc. 131 (2003), 631-636
- DOI: https://doi.org/10.1090/S0002-9939-02-06834-X
- Published electronically: September 25, 2002
- PDF | Request permission
Abstract:
Let $\lambda _{k}(\Omega )$ be the $k$th Dirichlet eigenvalue of a bounded domain $\Omega$ in $\mathbb {R}^{n}$. According to Weyl’s asymptotic formula we have \[ \lambda _{k}(\Omega )\thicksim C_{n}(k/V(\Omega ))^{2/n}.\] The optimal in view of this asymptotic relation lower estimate for the sums $\sum _{j=1}^{k}\lambda _{j}(\Omega )$ has been proven by P.Li and S.T.Yau (Comm. Math. Phys. 88 (1983), 309-318). Here we will improve this estimate by adding to its right-hand side a term of the order of $k$ that depends on the ratio of the volume to the moment of inertia of $\Omega$.References
- Pawel Kröger, Estimates for sums of eigenvalues of the Laplacian, J. Funct. Anal. 126 (1994), no. 1, 217–227. MR 1305068, DOI 10.1006/jfan.1994.1146
- Peter Li and Shing Tung Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), no. 3, 309–318. MR 701919
- Elliott H. Lieb, The number of bound states of one-body Schroedinger operators and the Weyl problem, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 241–252. MR 573436
- G. Pólya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc. (3) 11 (1961), 419–433. MR 129219, DOI 10.1112/plms/s3-11.1.419
- Barry Simon, Analysis with weak trace ideals and the number of bound states of Schrödinger operators, Trans. Amer. Math. Soc. 224 (1976), no. 2, 367–380. MR 423128, DOI 10.1090/S0002-9947-1976-0423128-X
- Robert S. Strichartz, Estimates for sums of eigenvalues for domains in homogeneous spaces, J. Funct. Anal. 137 (1996), no. 1, 152–190. MR 1383015, DOI 10.1006/jfan.1996.0043
Bibliographic Information
- Antonios D. Melas
- Affiliation: Department of Mathematics, University of Athens, Panepistimiopolis 15784, Athens, Greece
- MR Author ID: 311078
- Email: amelas@math.uoa.gr
- Received by editor(s): August 28, 2001
- Published electronically: September 25, 2002
- Communicated by: Bennett Chow
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 631-636
- MSC (2000): Primary 58G25; Secondary 35P15, 58G05
- DOI: https://doi.org/10.1090/S0002-9939-02-06834-X
- MathSciNet review: 1933356