Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Subsymmetric sequences and minimal spaces
HTML articles powered by AMS MathViewer

by Anna Maria Pelczar PDF
Proc. Amer. Math. Soc. 131 (2003), 765-771 Request permission

Abstract:

We show that every Banach space saturated with subsymmetric basic sequences contains a minimal subspace.
References
  • P. G. Casazza, W. B. Johnson, and L. Tzafriri, On Tsirelson’s space, Israel J. Math. 47 (1984), no. 2-3, 81–98. MR 738160, DOI 10.1007/BF02760508
  • P. G. Casazza and E. Odell, Tsirelson’s space and minimal subspaces, Texas Functional Analysis Seminar 1982/3, Longhorn Notes, University of Texas, pp. 61–72.
  • W. T. Gowers, A new dichotomy for Banach spaces, Geom. Funct. Anal. 6 (1996), no. 6, 1083–1093. MR 1421876, DOI 10.1007/BF02246998
  • W. T. Gowers, Infinite Ramsey theorem and some Banach-space dichotomies, preprint.
  • W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851–874. MR 1201238, DOI 10.1090/S0894-0347-1993-1201238-0
  • K. Kuratowski and A. Mostowski, Teoria mnogości, Monografie Matematyczne 27, Warszawa, 1978.
  • Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
  • Bernard Maurey, A note on Gowers’ dichotomy theorem, Convex geometric analysis (Berkeley, CA, 1996) Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 149–157. MR 1665587
  • A. M. Pelczar, On Gowers’ dichotomy, to be published in Recent Progress in Functional Analysis (K.D. Bierstedt, J. Bonet, M. Maestre, J. Schmets, eds.) Proceedings of Functional Analysis Valencia 2000, North-Holland Math. Studies.
  • Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411
  • Th. Schlumprecht, A complementably minimal Banach space not containing $c_{0}$ or $\ell _{p}$, Seminar Notes in Functional Analysis and PDE’s, LSU, 1991-92, pp. 169–181.
  • E. Tutaj, O pewnych warunkach wystarczaja̧cych do istnienia w przestrzeni Banacha cia̧gu bazowego bezwarunkowego (On some conditions sufficient for the existence of an unconditional basic sequence in a Banach space), Ph.D. Thesis, Uniwersytet Jagielloński, Kraków, 1974.
  • Edward Tutaj, On Schauder bases which are unconditional like, Bull. Polish Acad. Sci. Math. 33 (1985), no. 3-4, 137–146 (English, with Russian summary). MR 805027
  • P. Zbierski, lecture, Uniwersytet Warszawski, 1999.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B20, 46B15
  • Retrieve articles in all journals with MSC (2000): 46B20, 46B15
Additional Information
  • Anna Maria Pelczar
  • Affiliation: Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
  • Email: apelczar@im.uj.edu.pl
  • Received by editor(s): July 10, 2001
  • Received by editor(s) in revised form: October 9, 2001
  • Published electronically: July 2, 2002
  • Communicated by: N. Tomczak-Jaegermann
  • © Copyright 2002 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 131 (2003), 765-771
  • MSC (2000): Primary 46B20; Secondary 46B15
  • DOI: https://doi.org/10.1090/S0002-9939-02-06594-2
  • MathSciNet review: 1937415