THE NUMERICAL RADIUS AND BOUNDS FOR ZEROS OF A POLYNOMIAL

YURI A. ALPIN, MAO-TING CHIEN, AND LINA YEH

(Communicated by David Sharp)

Abstract. Let \(p(t) \) be a monic polynomial. We obtain two bounds for zeros of \(p(t) \) via the Perron root and the numerical radius of the companion matrix of the polynomial.

Consider the monic polynomial

\[
p(t) = t^n + a_{n-1}t^{n-1} + a_{n-2}t^{n-2} + \cdots + a_1 t + a_0.
\]

Fujii and Kubo [2] derived from the Buzano inequality a bound for the zeros of \(p(z) = 0 \):

\[
|z| \leq \cos \frac{\pi}{n+1} + \frac{1}{2} \left(|a_{n-1}| + (|a_{n-1}|^2 + |a_{n-2}|^2 + \cdots + |a_0|^2)^{1/2} \right).
\]

Let \(A = (a_{ij}) \in M_n \) be a nonnegative matrix. The famous Perron-Frobenius theorem shows that \(A \) has a nonnegative real eigenvalue \(\rho(A) \) such that \(\rho(A) \geq |\lambda| \), for every eigenvalue \(\lambda \) of \(A \). The eigenvalue \(\rho(A) \) is called the Perron root of \(A \).

By the directed graph of \(A \), we mean as usual the directed graph with \(n \) vertices 1, 2, \ldots, \(n \) such that there is a directed arc from \(i \) to \(j \) if \(a_{ij} > 0 \). Let \(s_i = \sum_{j=1}^n a_{ij} \). The mean weight of a directed path \(\sigma \) of the sequential directed arcs \(i_1, i_2, \ldots, i_{k+1} \) in the directed graph is the geometric mean \(w_\sigma = (s_{i_1} s_{i_2} \cdots s_{i_k})^{1/k} \). Alpin [1] obtained that

\[\rho(A) \leq \max_\sigma w_\sigma, \]

where \(\sigma \) runs over all simple contours in the directed graph of \(A \).

Remark 1. It is known [3 8.1.18] that the spectral radius of any matrix \(A \) is less than or equal to the spectral radius (=Perron root) of the nonnegative matrix, whose \((i,j)\)-element is the absolute value of the \((i,j)\)-element of \(A \).
Relating to the polynomial (1), we consider the companion matrix of the polynomial which is the \(n \times n \) matrix

\[
A = \begin{pmatrix}
0 & \cdots & \cdots & \cdots & -a_0 \\
1 & 0 & \cdots & \cdots & \vdots \\
0 & 1 & \ddots & \cdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 1 & -a_{n-1}
\end{pmatrix}.
\]

(3)

It is known that the characteristic polynomial of the companion matrix \(A \) is \(p(t) \).

Applying Alpin’s result and Remark 1 to the companion matrix (3), the following bound is immediate.

Theorem 1. Let \(p(t) \) be the polynomial defined by (1) and \(p(z) = 0 \). Then

\[
|z| \leq \max_{1 \leq k \leq n} \left(1 + |a_{n-1}|(1 + |a_{n-2}|) \cdots (1 + |a_{n-k}|) \right)^{1/k}.
\]

Remark 2. Let us denote \(FK(p) \) as the bound at the right-hand side of (2), \(A(p) \) the bound in Theorem 1, and \(C(p) \) the maximum absolute value of the coefficients of \(p \). Suppose we can find a sequence of polynomials \(p_n(t) \) such that \(C(p_n) \) approaches infinity as \(n \to \infty \), and \(A(p_n) \) is bounded for all \(n \), for example by considering the polynomials

\[
p_n(t) = t^n + t + n, \quad n = 2, 3, \ldots.
\]

Then \(FK(p_n) \) goes to infinity, and \(A(p_n) = 2^{1/2}(1 + n)^{1/n} \) converges to 1, \(A(p_n) \) is an “infinity sharper” than \(FK(p_n) \). Furthermore, we compare the bounds with the well known estimate (cf. \[6, p. 65\])

\[
|z| \leq 2 \max \{|a_{n-k}|^{1/k} : 1 \leq k \leq n\}.
\]

For the polynomial \(p_n \), this estimate \(2n^{1/n} \) is closely comparable to \(A(p_n) \).

Let \(A \in M_n(\mathbb{C}) \). The numerical range of \(A \) is the set of complex numbers

\[
\mathcal{W}(A) = \{x^*Ax : x \in \mathbb{C}^n, |x| = 1\}.
\]

By the well known Toeplitz-Hausdorff theorem, the numerical range \(\mathcal{W}(A) \) is a convex subset of \(\mathbb{C} \) containing the eigenvalues of \(A \). The numerical radius \(\rho(A) \) of \(A \) is the largest modulus of any point in \(\mathcal{W}(A) \). (For references on the properties of the numerical range, see, for instance [8, Chapter 1].) From the numerical range standpoint, we investigate the numerical radius of the companion matrix of \(p(t) \). The result is applicable to give a bound for the zeros of \(p(t) \).

Let \(A = (a_{ij}) \in M_n \), and let

\[
R_i(A) = \sum_{j=1, j \neq i}^n |a_{ij}| \quad \text{and} \quad g_i(A) = (R_i(A) + R_i(A^*))/2, \quad 1 \leq i \leq n.
\]

The Geršgorin disc theorem (cf. [3, 6.1.1]) shows that the spectrum \(\sigma(A) \) of \(A \) is contained in Geršgorin discs:

\[
\sigma(A) \subset \bigcup_{i=1}^n \{z : |z - a_{ii}| \leq R_i(A)\}.
\]
Brauer [3, 6.4.7] improved the Geršgorin theorem (4), and obtaining a smaller inclusion region, the so-called ovals of Cassini:

\[(5) \quad \sigma(A) \subset \bigcup_{i,j=1, i \neq j}^n \{z : |z - a_{ii}| |z - a_{jj}| \leq R_i(A)R_j(A)\}.
\]

Johnson [5] used Geršgorin disc theorem (4) and obtained a Geršgorin inclusion region, the so-called ovals of Cassini:

\[(5) \quad \sigma(A) \subset \bigcup_{i,j=1, i \neq j}^n \{z : |z - a_{ii}| |z - a_{jj}| \leq g_i(A)g_j(A)\},
\]

where “conv” stands for the convex hull of a set. It seems that we may use the inclusion (5) and make the following guess that

\[(6) \quad W(A) \subset \text{conv} \{ \bigcup_{i,j=1, i \neq j}^n \{z : |z - a_{ii}| |z - a_{jj}| \leq g_i(A)g_j(A)\}\}.
\]

However, the matrix \(A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}\) gives a counterexample: the inclusion (6) is false. In the following, we are able to extend Johnson’s result [5] to a containment region which is the convex hull of the same type of Cassini ovals.

Theorem 2. Let \(A = (a_{ij}) \in M_n\). Then

\[W(A) \subset G(A), \]

where

\[G(A) = \text{conv} \{ \bigcup_{i,j=1, i \neq j}^n \{z : |z - a_{ii}| |z - a_{jj}| \leq (g_i^2(A)g_j^2(A) + |a_{ii} - a_{jj}|^2)^{1/2}\}\}. \]

Proof. Since \(W(\beta A) = \beta W(A)\) and \(G(\beta A) = \beta G(A)\) for every complex number \(\beta\), we may assume without loss of generality that the Frobenius norm

\[\|A\|_2 = \left(\sum_{i,j=1}^n |a_{ij}|^2 \right)^{1/2} = 1. \]

We claim first that if \(G(A)\) is contained in the right half plane, then \(W(A)\) is also contained in the right half plane. Observe that \(G(A)\) enjoys two numerical range properties:

\[G(A + \lambda I) = G(A) + \lambda \text{ and } G(e^{i\theta}A) = e^{i\theta}G(A). \]

Consider a typical curve in the region \(G(A)\):

\[(7) \quad |z - a_{ii}| |z - a_{jj}| = \alpha_{ij}, \]

where \(\alpha_{ij} = (g_i^2(A)g_j^2(A) + |a_{ii} - a_{jj}|^2)^{1/2}\). Assume \(a_{ii} = p_1 + \sqrt{-1}p_2\) and \(a_{jj} = q_1 + \sqrt{-1}q_2\), where \(p_1, p_2, q_1, q_2 \in \mathbb{R}\). The equation of rectangular coordinates of (7) becomes

\[(8) \quad \left((x - p_1)^2 + (y - p_2)^2\right)\left((x - q_1)^2 + (y - q_2)^2\right) = \alpha_{ij}^2. \]

Suppose \(p_1 \leq q_1\). The case \(q_1 \leq p_1\) can be treated in a similar way. It is obvious that \(a_{ii}\) belongs to the region bounded by the curve (8) which is contained in \(G(A)\). By the assumption that \(G(A)\) lies in the right half plane, we obtain that \(p_1 > 0\), and
the intersections of the curve (8) with the horizontal line y = p_2 are contained in the right half plane. Therefore, the roots of the function
\[f(x) = (x - p_1)^2 \left((x - q_1)^2 + (p_2 - q_2)^2 \right) - \alpha_{ij}^2 \]
are positive. We compute that
\[f'(x) = 2(x - p_1) \left((x - q_1)^2 + (p_2 - q_2)^2 \right) + 2(x - q_1)(x - p_1)^2. \]
Then \(f'(x) \leq 0 \) for \(x \leq p_1 \), and thus \(f \) is decreasing on \((-\infty, 0)\). Now since \(f \) has no negative roots and \(f(x) \) takes positive values for negative sufficient large numbers \(x \), it follows that \(f(0) > 0 \). The condition \(f(0) > 0 \) is equivalent to the inequality
\[p_1^2 q_1^2 + p_1^2 (p_2 - q_2)^2 > g_i^2(A) g_j^2(A) + |a_{ii} - a_{jj}|^2. \]
From (9) and the assumption that \(\|A\|_2 = 1 \), we have
\[p_1 q_1 > g_i(A) g_j(A). \]
The condition (10) gives a criterion for no nonnegative solutions of the following equation:
\[|x - p_1| |x - q_1| = g_i(A) g_j(A). \]
Hence the region
\[\{ z : |z - p_1| |z - q_1| \leq g_i(A) g_j(A) \} \]
is contained in the right half plane.

Let \(A_H \) and \(A_K \) be the Hermitian parts of \(A \) such that \(A = A_H + iA_K \). Then
\[W(A) \subset W(A_H) + iW(A_K). \]
By Brauer’s result (5),
\[(12) \quad \sigma(A_H) \subset \bigcup_{i,j=1,i\neq j}^{n} \{ z : |z - \text{Re } a_{ii}| |z - \text{Re } a_{jj}| \leq g_i(A) g_j(A) \}. \]
By (11) and (12), \(\sigma(A_H) \) is contained in the right half plane. Since \(\text{Re} W(A) = W(A_H) \) is the convex hull of the \(\sigma(A_H) \), it follows that \(W(A) \) is contained in the right half plane, and this proves the claim.

Now suppose \(\alpha \in W(A) \). Then \(0 \in W(A - \alpha I) \). If \(0 \notin G(A - \alpha I) \), then there would exist \(\theta \) such that \(G(e^{i\theta}(A - \alpha I)) = e^{i\theta} G(A - \alpha I) \) is contained in the right half plane. By the claim, \(W(e^{i\theta}(A - \alpha I)) \) is contained in the right half plane. But then \(0 \notin e^{i\theta} W(A - \alpha I) = W(e^{i\theta}(A - \alpha I)) \), a contradiction. Thus \(0 \in G(A - \alpha I) = G(A) - \alpha \), and therefore \(\alpha \in G(A) \).

As a consequence of Theorem 2, we locate a bound for the zeros of \(p(t) \) defined in (1).

Theorem 3. Let \(p(t) \) be the polynomial (1) and \(p(z) = 0 \), and \(A \) be the matrix defined by (3). Let \(\alpha = \max_{1 \leq i < n} g_i(A) \). Then
\[|z| \leq |a_{n-1}|/2 + \left(|a_{n-1}|^2/4 + \alpha^2 g_n^2(A) + |a_{n-1}|^2 \right)^{1/2}. \]
Proof. The possible Cassini ovals in Theorem 2 are
\begin{equation}
|z| \leq (g_i(A)g_j(A))^{1/2}, \quad 1 \leq i \neq j < n,
\end{equation}
and
\begin{equation}
|z||z + a_{n-1}| \leq (g_i^2(A)g_j^2(A) + |a_{n-1}|)^{1/2}, \quad 1 \leq i < n.
\end{equation}
From (13), we have $|z| \leq \alpha$. From (14), we have
\[|z| \leq |a_{n-1}|/2 + \left(|a_{n-1}|^2/4 + (\alpha^2 g_n^2(A) + |a_{n-1}|^2)^{1/2} \right). \]
The inclusion follows from the facts that
\[\alpha \leq |a_{n-1}|/2 + \left(|a_{n-1}|^2/4 + (\alpha^2 g_n^2(A) + |a_{n-1}|^2)^{1/2} \right)^{1/2} \]
and $\sigma(A) \subset W(A)$.

The quantities $g_i(A)$ appearing in Theorem 3 are easy to evaluate explicitly in terms of the coefficients of $p(z)$:
\[g_1(A) = (1 + |a_0|)/2, \quad g_2(A) = (2 + |a_1|)/2, \ldots, \quad g_{n-1}(A) = (2 + |a_{n-2}|)/2 \]
and
\[g_n(A) = (1 + S)/2 \quad \text{where} \quad S = \sum_{k=0}^{n-2} |a_k|. \]
Thus $\alpha = \max_i g_i(A)$ is either $(1 + S)/2$ or $\beta = \max_{1 \leq k \leq n-2} (2 + |a_k|)/2$, depending on which is greater. Theorem 3 may then be stated as follows: any root z of p must satisfy
\begin{equation}
|z| \leq |a_{n-1}|/2 + \left(|a_{n-1}|^2/4 + (\alpha^2 (1 + S)/2)^2 + |a_{n-1}|^2\right)^{1/2},
\end{equation}
where $\alpha = \max\{\beta, (1 + S)/2\}$.

On the other hand, we may more directly estimate the roots based on Brauer’s containment of $\sigma(A)$. Brauer’s theorem (5) applied to the companion matrix A tells us that any root z of p satisfies one of the inequalities
\[|z|^2 \leq R_i(A)R_j(A) \quad (i < j < n) \]
or
\[|z(z + a_{n-1})| \leq R_n(A)R_j(A) \quad (j < n). \]
Now $R_1(A) = |a_0|$, $R_j(A) = 1 + |a_{j-1}|$, $1 < j < n$, and $R_n(A) = 1$. Let M and m denote the largest and second largest numbers among
\[|a_0|, 1 + |a_1|, \ldots, 1 + |a_{n-2}|. \]
Clearly a root z must satisfy either $|z| \leq (Mm)^{1/2}$ or $|z||z| - |a_{n-1}| \leq M$, i.e.,
\begin{equation}
|z| \leq \max\{(Mm)^{1/2}, (|a_{n-1}| + |a_{n-1}|^2 + 4M)^{1/2}/2\}.
\end{equation}
Applying Brauer’s theorem to the adjoint of the companion matrix A gives us corresponding inequality
\begin{equation}
|z| \leq \max\{1, |a_{n-1}| + |a_{n-1}|^2 + 4S\}/2\}.
\end{equation}
In fact, it turns out that (16) and (17), taken together, are stronger than the inequality (15) of Theorem 3, unless S is quite small. The right-hand side of (15) is no less than
\[
Q = |a_{n-1}|/2 + \left(|a_{n-1}|^2/4 + ((1 + S)/2)^4 + |a_{n-1}|^2/2 \right)^{1/2}
\]
and
\[
(|a_{n-1}| + (|a_{n-1}|^2 + 4S)^{1/2})/2 \leq Q.
\]
Thus (15) cannot be stronger than (17) unless the right-hand side of (15) is smaller than 1. Then (15) is also stronger than (16) since $M,m \geq 1$ when $n \geq 4$. But if the right-hand side of (15) is less than 1, then we have $\alpha(1+S)/2 < 1$ with $\alpha = (2 + |a_k|)/2 > (1 + S)/2$, putting strong restrictions on the size of S.

Remark 3. We give a comparison among the numerical bounds obtained by Fujii-Kubo (2), Theorem 1, Theorem 3, and (17). Consider the polynomial $p(t) = t^5 + 2t^4 + 1$. The numerical bounds obtained by Fujii-Kubo (2), Theorem 1, Theorem 3, and (17) are approximated to 2.984, 3.000, 2.750 and 2.414, respectively. (17) is the best bound among them.

On the other hand, consider the polynomial $p(t) = t^5 + 0.01t^4 + 0.01t + 0.01$ with small coefficients. The numerical bounds obtained by Fujii-Kubo (2), Theorem 1, Theorem 3, and (17) are 0.719, 1.010, 0.716, and 1.000 respectively. In this case, Theorem 3 is the best.

Acknowledgements

The authors are grateful to the referee for his/her helpful suggestions, especially for providing the estimates (16) and (17) based on Brauer’s theorem. The referee also pointed out that the new bound for the polynomial roots is usually stronger than Theorem 3, unless the coefficients of the polynomial are small.

References

Department of Mathematics and Mechanics, Kazan State University, Kazan, Russia, 420008

E-mail address: Yuri.Alpin@ksu.ras.ru

Department of Mathematics, Soochow University, Taipei, Taiwan 11102
E-mail address: mtchien@math.scu.edu.tw

Department of Mathematics, Soochow University, Taipei, Taiwan 11102
E-mail address: yehlina@math.scu.edu.tw