The Berezin transform and radial operators
HTML articles powered by AMS MathViewer
- by Nina Zorboska
- Proc. Amer. Math. Soc. 131 (2003), 793-800
- DOI: https://doi.org/10.1090/S0002-9939-02-06691-1
- Published electronically: July 2, 2002
- PDF | Request permission
Abstract:
We analyze the connection between compactness of operators on the Bergman space and the boundary behaviour of the corresponding Berezin transform. We prove that for a special class of operators that we call radial operators, an oscilation criterion is a sufficient condition under which the compactness of an operator is equivalent to the vanishing of the Berezin transform on the unit circle. We further study a special class of radial operators, i.e., Toeplitz operators with a radial $L^{1}(\mathbb {D})$ symbol.References
- Patrick Ahern, Manuel Flores, and Walter Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), no. 2, 380–397. MR 1203459, DOI 10.1006/jfan.1993.1018
- Sheldon Axler and Dechao Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47 (1998), no. 2, 387–400. MR 1647896, DOI 10.1512/iumj.1998.47.1407
- Sheldon Axler and Dechao Zheng, The Berezin transform on the Toeplitz algebra, Studia Math. 127 (1998), no. 2, 113–136. MR 1488147, DOI 10.4064/sm-127-2-113-136
- Miroslav Engliš, Functions invariant under the Berezin transform, J. Funct. Anal. 121 (1994), no. 1, 233–254. MR 1270592, DOI 10.1006/jfan.1994.1048
- Grudski, S., Vasilevski, N.: Bergman-Toeplitz Operators:Radial Component Influence, Integral Equations Operator Theory 40 (2001), no. 1, 16–33
- Semra Kiliç, The Berezin symbol and multipliers of functional Hilbert spaces, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3687–3691. MR 1277120, DOI 10.1090/S0002-9939-1995-1277120-3
- Boris Korenblum and Ke He Zhu, An application of Tauberian theorems to Toeplitz operators, J. Operator Theory 33 (1995), no. 2, 353–361. MR 1354985
- Daniel H. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), no. 2, 345–368. MR 899655, DOI 10.1016/0022-1236(87)90072-3
- G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), no. 4, 595–611. MR 542947, DOI 10.1512/iumj.1979.28.28042
- Eric Nordgren and Peter Rosenthal, Boundary values of Berezin symbols, Nonselfadjoint operators and related topics (Beer Sheva, 1992) Oper. Theory Adv. Appl., vol. 73, Birkhäuser, Basel, 1994, pp. 362–368. MR 1320554
- A. G. Postnikov, Tauberian theory and its applications, Trudy Mat. Inst. Steklov. 144 (1979), 147 (Russian). MR 543488
- Karel Stroethoff, The Berezin transform and operators on spaces of analytic functions, Linear operators (Warsaw, 1994) Banach Center Publ., vol. 38, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 361–380. MR 1457018
- Karel Stroethoff, Compact Toeplitz operators on Bergman spaces, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 1, 151–160. MR 1620524, DOI 10.1017/S0305004197002375
- Vukotić, D.: Carleson Measures and Bergman Spaces Operators, Preprint
- Ke He Zhu, Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory 20 (1988), no. 2, 329–357. MR 1004127
- Ke He Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR 1074007
Bibliographic Information
- Nina Zorboska
- Affiliation: Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
- Email: zorbosk@cc.umanitoba.ca
- Received by editor(s): February 6, 2001
- Received by editor(s) in revised form: October 12, 2001
- Published electronically: July 2, 2002
- Additional Notes: This work was supported by an NSERC grant
- Communicated by: David R. Larson
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 793-800
- MSC (2000): Primary 47B37, 47B10; Secondary 47B35
- DOI: https://doi.org/10.1090/S0002-9939-02-06691-1
- MathSciNet review: 1937440