Helly-type theorems for homothets of planar convex curves
HTML articles powered by AMS MathViewer
- by Konrad J. Swanepoel
- Proc. Amer. Math. Soc. 131 (2003), 921-932
- DOI: https://doi.org/10.1090/S0002-9939-02-06722-9
- Published electronically: July 17, 2002
- PDF | Request permission
Abstract:
Helly’s theorem implies that if $\boldsymbol {\mathcal {S}}$ is a finite collection of (positive) homothets of a planar convex body $B$, any three having non-empty intersection, then $\boldsymbol {\mathcal {S}}$ has non-empty intersection. We show that for collections $\boldsymbol {\mathcal {S}}$ of homothets (including translates) of the boundary $\partial B$, if any four curves in $\boldsymbol {\mathcal {S}}$ have non-empty intersection, then $\boldsymbol {\mathcal {S}}$ has non-empty intersection. We prove the following dual version: If any four points of a finite set $S$ in the plane can be covered by a translate [homothet] of $\partial B$, then $S$ can be covered by a translate [homothet] of $\partial B$. These results are best possible in general.References
- N. Amenta, Helly-type theorems and generalized linear programming, Discrete Comput. Geom. 12 (1994), no. 3, 241–261. ACM Symposium on Computational Geometry (San Diego, CA, 1993). MR 1298910, DOI 10.1007/BF02574379
- Leonard M. Blumenthal, Theory and applications of distance geometry, 2nd ed., Chelsea Publishing Co., New York, 1970. MR 0268781
- Vladimir Boltyanski, Horst Martini, and Petru S. Soltan, Excursions into combinatorial geometry, Universitext, Springer-Verlag, Berlin, 1997. MR 1439963, DOI 10.1007/978-3-642-59237-9
- Ludwig Danzer, Branko Grünbaum, and Victor Klee, Helly’s theorem and its relatives, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 101–180. MR 0157289
- M. Deza and P. Frankl, A Helly type theorem for hypersurfaces, J. Combin. Theory Ser. A 45 (1987), no. 1, 27–30. MR 883890, DOI 10.1016/0097-3165(87)90043-4
- Jürgen Eckhoff, Helly, Radon, and Carathéodory type theorems, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 389–448. MR 1242986
- P. Frankl, Helly-type theorems for varieties, European J. Combin. 10 (1989), no. 3, 243–245. MR 1029170, DOI 10.1016/S0195-6698(89)80058-7
- A. Getmanenko, On orders of congruence of some sets in ${\mathbf R}^n$, unpublished manuscript.
- A. Getmanenko, Helly-type theorems for plane convex curves, arXiv.org e-Print archive http://arxiv.org/abs/math.MG/0010311
- B. Grünbaum, Borsuk’s partition conjecture in Minkowski planes, Bull. Res. Council Israel Sect. F 7F (1957/58), 25–30. MR 103440
- Branko Grünbaum, Measures of symmetry for convex sets, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 233–270. MR 0156259
- E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jahresber. Deutsch. Math.-Verein. 32 (1923), 175–176.
- Horst Kramer and A. B. Németh, Equally spaced points for families of compact convex sets in Minkowski spaces, Mathematica (Cluj) 15(38) (1973), 71–78. MR 362062
- Hiroshi Maehara, Helly-type theorems for spheres, Discrete Comput. Geom. 4 (1989), no. 3, 279–285. MR 988750, DOI 10.1007/BF02187730
- H. Martini, K. J. Swanepoel, G. Weiss, The geometry of Minkowski spaces — a survey. Part I, Expo. Math. 19 (2001) 97–142.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Konrad J. Swanepoel, Helly-type theorems for hollow axis-aligned boxes, Proc. Amer. Math. Soc. 127 (1999), no. 7, 2155–2162. MR 1646208, DOI 10.1090/S0002-9939-99-05220-X
- K. J. Swanepoel, Helly-type theorems for polygonal curves, Discrete Math. 254 (2002), 527–537.
- S. G. Wayment, On congruence indices for simple closed curves, Proc. Amer. Math. Soc. 28 (1971), 199–207. MR 275295, DOI 10.1090/S0002-9939-1971-0275295-X
Bibliographic Information
- Konrad J. Swanepoel
- Affiliation: Department of Mathematics, Applied Mathematics and Astronomy, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa
- Email: swanekj@unisa.ac.za
- Received by editor(s): October 12, 2000
- Received by editor(s) in revised form: October 23, 2001
- Published electronically: July 17, 2002
- Communicated by: John R. Stembridge
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 921-932
- MSC (2000): Primary 52A23; Secondary 52A10
- DOI: https://doi.org/10.1090/S0002-9939-02-06722-9
- MathSciNet review: 1937431