## Helly-type theorems for homothets of planar convex curves

HTML articles powered by AMS MathViewer

- by Konrad J. Swanepoel PDF
- Proc. Amer. Math. Soc.
**131**(2003), 921-932 Request permission

## Abstract:

Helly’s theorem implies that if $\boldsymbol {\mathcal {S}}$ is a finite collection of (positive) homothets of a planar convex body $B$, any three having non-empty intersection, then $\boldsymbol {\mathcal {S}}$ has non-empty intersection. We show that for collections $\boldsymbol {\mathcal {S}}$ of homothets (including translates) of the*boundary*$\partial B$, if any

*four*curves in $\boldsymbol {\mathcal {S}}$ have non-empty intersection, then $\boldsymbol {\mathcal {S}}$ has non-empty intersection. We prove the following dual version: If any

*four*points of a finite set $S$ in the plane can be covered by a translate [homothet] of $\partial B$, then $S$ can be covered by a translate [homothet] of $\partial B$. These results are best possible in general.

## References

- N. Amenta,
*Helly-type theorems and generalized linear programming*, Discrete Comput. Geom.**12**(1994), no. 3, 241–261. ACM Symposium on Computational Geometry (San Diego, CA, 1993). MR**1298910**, DOI 10.1007/BF02574379 - Leonard M. Blumenthal,
*Theory and applications of distance geometry*, 2nd ed., Chelsea Publishing Co., New York, 1970. MR**0268781** - Vladimir Boltyanski, Horst Martini, and Petru S. Soltan,
*Excursions into combinatorial geometry*, Universitext, Springer-Verlag, Berlin, 1997. MR**1439963**, DOI 10.1007/978-3-642-59237-9 - Ludwig Danzer, Branko Grünbaum, and Victor Klee,
*Helly’s theorem and its relatives*, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 101–180. MR**0157289** - M. Deza and P. Frankl,
*A Helly type theorem for hypersurfaces*, J. Combin. Theory Ser. A**45**(1987), no. 1, 27–30. MR**883890**, DOI 10.1016/0097-3165(87)90043-4 - Jürgen Eckhoff,
*Helly, Radon, and Carathéodory type theorems*, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 389–448. MR**1242986** - P. Frankl,
*Helly-type theorems for varieties*, European J. Combin.**10**(1989), no. 3, 243–245. MR**1029170**, DOI 10.1016/S0195-6698(89)80058-7 - A. Getmanenko,
*On orders of congruence of some sets in ${\mathbf R}^n$*, unpublished manuscript. - A. Getmanenko,
*Helly-type theorems for plane convex curves*, arXiv.org e-Print archive http://arxiv.org/abs/math.MG/0010311 - B. Grünbaum,
*Borsuk’s partition conjecture in Minkowski planes*, Bull. Res. Council Israel Sect. F**7F**(1957/58), 25–30. MR**103440** - Branko Grünbaum,
*Measures of symmetry for convex sets*, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 233–270. MR**0156259** - E. Helly,
*Über Mengen konvexer Körper mit gemeinschaftlichen Punkten*, Jahresber. Deutsch. Math.-Verein.**32**(1923), 175–176. - Horst Kramer and A. B. Németh,
*Equally spaced points for families of compact convex sets in Minkowski spaces*, Mathematica (Cluj)**15(38)**(1973), 71–78. MR**362062** - Hiroshi Maehara,
*Helly-type theorems for spheres*, Discrete Comput. Geom.**4**(1989), no. 3, 279–285. MR**988750**, DOI 10.1007/BF02187730 - H. Martini, K. J. Swanepoel, G. Weiss,
*The geometry of Minkowski spaces — a survey. Part I*, Expo. Math.**19**(2001) 97–142. - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3 - Konrad J. Swanepoel,
*Helly-type theorems for hollow axis-aligned boxes*, Proc. Amer. Math. Soc.**127**(1999), no. 7, 2155–2162. MR**1646208**, DOI 10.1090/S0002-9939-99-05220-X - K. J. Swanepoel,
*Helly-type theorems for polygonal curves*, Discrete Math.**254**(2002), 527–537. - S. G. Wayment,
*On congruence indices for simple closed curves*, Proc. Amer. Math. Soc.**28**(1971), 199–207. MR**275295**, DOI 10.1090/S0002-9939-1971-0275295-X

## Additional Information

**Konrad J. Swanepoel**- Affiliation: Department of Mathematics, Applied Mathematics and Astronomy, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa
- Email: swanekj@unisa.ac.za
- Received by editor(s): October 12, 2000
- Received by editor(s) in revised form: October 23, 2001
- Published electronically: July 17, 2002
- Communicated by: John R. Stembridge
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**131**(2003), 921-932 - MSC (2000): Primary 52A23; Secondary 52A10
- DOI: https://doi.org/10.1090/S0002-9939-02-06722-9
- MathSciNet review: 1937431