Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Une propriété de continuité du temps local
HTML articles powered by AMS MathViewer

by Lucien Chevalier PDF
Proc. Amer. Math. Soc. 131 (2003), 933-936 Request permission


Let $L^0(M)$ denote the local time (at 0) associated with a martingale $M$. The aim of this note is to prove that the mapping $M \mapsto L^0(M)$ is continuous from $L^1$ into weak-$L^1$.
  • J. Azéma et M. Yor. En guise d’introduction. Astérisque 52-53 (Temps locaux), Société mathématique de France (1978), 3-16.
  • M. T. Barlow and M. Yor, (Semi-) martingale inequalities and local times, Z. Wahrsch. Verw. Gebiete 55 (1981), no. 3, 237–254. MR 608019, DOI 10.1007/BF00532117
  • D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1504. MR 208647, DOI 10.1214/aoms/1177699141
  • P. A. Meyer, Un cours sur les intégrales stochastiques, Séminaire de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), Lecture Notes in Math., Vol. 511, Springer, Berlin, 1976, pp. 245–400 (French). MR 0501332
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 60G44
  • Retrieve articles in all journals with MSC (2000): 60G44
Additional Information
  • Lucien Chevalier
  • Affiliation: Institut Fourier, U.M.R. 5582 C.N.R.S., Université Joseph Fourier, B.P. 74, 38402 Saint Martin d’Hères, France
  • Email:
  • Received by editor(s): August 18, 2001
  • Published electronically: October 15, 2002
  • Communicated by: Claudia M. Neuhauser
  • © Copyright 2002 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 131 (2003), 933-936
  • MSC (2000): Primary 60G44
  • DOI:
  • MathSciNet review: 1937439