Farrell sets for harmonic functions
HTML articles powered by AMS MathViewer
- by Stephen J. Gardiner and Mary Hanley
- Proc. Amer. Math. Soc. 131 (2003), 773-779
- DOI: https://doi.org/10.1090/S0002-9939-02-06776-X
- Published electronically: September 17, 2002
- PDF | Request permission
Abstract:
Let $F$ denote a relatively closed subset of the unit ball $B$ of $\mathbb {R} ^{n}$. The purpose of this paper is to characterize those sets $F$ which have the following property: any harmonic function $h$ on $B$ which satisfies $\left | h\right | \leq M$ on $F$ (where $M>0$) can be locally uniformly approximated on $B$ by a sequence of harmonic polynomials which satisfy the same inequality on $F$. This answers a question posed by Stray, who had earlier solved the corresponding problem for holomorphic functions on the unit disc.References
- David H. Armitage and Stephen J. Gardiner, Classical potential theory, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2001. MR 1801253, DOI 10.1007/978-1-4471-0233-5
- A. Bonilla, F. Pérez-González, A. Stray, and R. Trujillo-González, Approximation in weighted Hardy spaces, J. Anal. Math. 73 (1997), 65–89. MR 1616465, DOI 10.1007/BF02788138
- A. A. Danielyan, On some problems that arise from Rubel’s problem on joint approximation, Dokl. Akad. Nauk 341 (1995), no. 1, 10–12 (Russian). MR 1331227
- Stephen J. Gardiner, Harmonic approximation, London Mathematical Society Lecture Note Series, vol. 221, Cambridge University Press, Cambridge, 1995. MR 1342298, DOI 10.1017/CBO9780511526220
- Stephen J. Gardiner, Mergelyan pairs for harmonic functions, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2699–2703. MR 1451804, DOI 10.1090/S0002-9939-98-04334-2
- A. Nicolau and J. Orobitg, Joint approximation in BMO, J. Funct. Anal. 173 (2000), no. 1, 21–48. MR 1760276, DOI 10.1006/jfan.1999.3552
- Anthony G. O’Farrell and Fernando Pérez-González, Pointwise bounded approximation by polynomials, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 1, 147–155. MR 1162939, DOI 10.1017/S0305004100070821
- F. Pérez-González, $H^p$ joint approximation, Proc. Amer. Math. Soc. 102 (1988), no. 3, 577–580. MR 928983, DOI 10.1090/S0002-9939-1988-0928983-6
- F. Pérez-González and A. Stray, Farrell and Mergelyan sets for $H^{p}$ spaces $(0<p<1)$, Michigan Math. J. 36 (1989), 379-386.
- Fernando Pérez-González and Rodrigo Trujillo-Gonzalez, Farrell and Mergelyan sets for the space of bounded harmonic functions, Classical and modern potential theory and applications (Chateau de Bonas, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 430, Kluwer Acad. Publ., Dordrecht, 1994, pp. 399–412. MR 1321629
- Fernando Pérez-González, Rodrigo Trujillo-González, and Arne Stray, Joint approximation in BMOA and VMOA, J. Math. Anal. Appl. 237 (1999), no. 1, 128–138. MR 1708166, DOI 10.1006/jmaa.1999.6468
- Lee A. Rubel and Arne Stray, Joint approximation in the unit disc, J. Approx. Theory 37 (1983), no. 1, 44–50. MR 685355, DOI 10.1016/0021-9045(83)90115-6
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
- A. Stray, Characterization of Mergelyan sets, Proc. Amer. Math. Soc. 44 (1974), 347–352. MR 361097, DOI 10.1090/S0002-9939-1974-0361097-5
- Arnaud Denjoy, Sur certaines séries de Taylor admettant leur cercle de convergence comme coupure essentielle, C. R. Acad. Sci. Paris 209 (1939), 373–374 (French). MR 50
- A. Stray, Simultaneous approximation in the Dirichlet space, Math. Scand. 89 (2001), 268–282.
- A. Stray, Simultaneous approximation in function spaces, in Approximation, Complex Analysis and Potential Theory, NATO Sci. Series II 37, Kluwer, Dordrecht, 2001, pp. 239–261.
Bibliographic Information
- Stephen J. Gardiner
- Affiliation: Department of Mathematics, University College Dublin, Dublin 4, Ireland
- MR Author ID: 71385
- ORCID: 0000-0002-4207-8370
- Email: stephen.gardiner@ucd.ie
- Mary Hanley
- Affiliation: Department of Mathematics, University College Dublin, Dublin 4, Ireland
- Email: mary.hanley@ucd.ie
- Received by editor(s): April 18, 2001
- Received by editor(s) in revised form: October 10, 2001
- Published electronically: September 17, 2002
- Additional Notes: This research was partially supported by EU Research Training Network HPRN-CT-2000-00116
- Communicated by: Juha M. Heinonen
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 773-779
- MSC (2000): Primary 31B05; Secondary 41A28
- DOI: https://doi.org/10.1090/S0002-9939-02-06776-X
- MathSciNet review: 1937416