## Equivalent quasi-norms on Lorentz spaces

HTML articles powered by AMS MathViewer

- by David E. Edmunds and Bohumír Opic PDF
- Proc. Amer. Math. Soc.
**131**(2003), 745-754 Request permission

## Abstract:

We give new characterizations of Lorentz spaces by means of certain quasi-norms which are shown to be equivalent to the classical ones.## References

- David R. Adams and Lars Inge Hedberg,
*Function spaces and potential theory*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR**1411441**, DOI 10.1007/978-3-662-03282-4 - Colin Bennett and Karl Rudnick,
*On Lorentz-Zygmund spaces*, Dissertationes Math. (Rozprawy Mat.)**175**(1980), 67. MR**576995** - Colin Bennett and Robert Sharpley,
*Interpolation of operators*, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR**928802** - A.-P. Calderón,
*Spaces between $L^{1}$ and $L^{\infty }$ and the theorem of Marcinkiewicz*, Studia Math.**26**(1966), 273–299. MR**203444**, DOI 10.4064/sm-26-3-301-304 - A. Cianchi, R. Kerman, B. Opic, and L. Pick,
*A sharp rearrangement inequality for the fractional maximal operator*, Studia Math.**138**(2000), no. 3, 277–284. MR**1758860** - David E. Edmunds, Petr Gurka, and Bohumír Opic,
*Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces*, Indiana Univ. Math. J.**44**(1995), no. 1, 19–43. MR**1336431**, DOI 10.1512/iumj.1995.44.1977 - D. E. Edmunds and B. Opic,
*Boundedness of fractional maximal operators between classical and weak-type Lorentz spaces*, Research Report No: 2000–15, CMAIA, University of Sussex at Brighton, 2000, 40 pp. (to appear in Dissert. Math. (2000)). - Shanzhong Lai,
*Weighted norm inequalities for general operators on monotone functions*, Trans. Amer. Math. Soc.**340**(1993), no. 2, 811–836. MR**1132877**, DOI 10.1090/S0002-9947-1993-1132877-X - Morgan Ward and R. P. Dilworth,
*The lattice theory of ova*, Ann. of Math. (2)**40**(1939), 600–608. MR**11**, DOI 10.2307/1968944 - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13** - Benjamin Muckenhoupt and Richard Wheeden,
*Weighted norm inequalities for fractional integrals*, Trans. Amer. Math. Soc.**192**(1974), 261–274. MR**340523**, DOI 10.1090/S0002-9947-1974-0340523-6 - B. Opic,
*New characterizations of Lorentz spaces*(to appear in Proc. Royal Soc. Edinburgh, Section A). - B. Opic and A. Kufner,
*Hardy-type inequalities*, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR**1069756** - B. Opic and L. Pick,
*On generalized Lorentz-Zygmund spaces*, Math. Inequal. Appl.**2**(1999), no. 3, 391–467. MR**1698383**, DOI 10.7153/mia-02-35 - E. Sawyer,
*Boundedness of classical operators on classical Lorentz spaces*, Studia Math.**96**(1990), no. 2, 145–158. MR**1052631**, DOI 10.4064/sm-96-2-145-158

## Additional Information

**David E. Edmunds**- Affiliation: Centre for Mathematical Analysis and Its Applications, University of Sussex, Falmer, Brighton BN1 9QH, England
- MR Author ID: 61855
- Email: d.e.edmunds@sussex.ac.uk
**Bohumír Opic**- Affiliation: Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic
- Email: opic@math.cas.cz
- Received by editor(s): July 1, 2001
- Published electronically: October 15, 2002
- Additional Notes: This research was supported by NATO Collaborative Research Grant PST.CLG 970071 and by grant no. 201/01/0333 of the Grant Agency of the Czech Republic
- Communicated by: Andreas Seeger
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**131**(2003), 745-754 - MSC (2000): Primary 46E30, 26D10, 47B38, 47G10
- DOI: https://doi.org/10.1090/S0002-9939-02-06870-3
- MathSciNet review: 1937412