Reduction numbers and initial ideals
HTML articles powered by AMS MathViewer
- by Aldo Conca PDF
- Proc. Amer. Math. Soc. 131 (2003), 1015-1020 Request permission
Abstract:
The reduction number $r(A)$ of a standard graded algebra $A$ is the least integer $k$ such that there exists a minimal reduction $J$ of the homogeneous maximal ideal $\mathbf m$ of $A$ such that $J\mathbf m^k=\mathbf m^{k+1}$. Vasconcelos conjectured that $r(R/I)\leq r(R/\mathrm {in}(I))$ where $\mathrm {in}(I)$ is the initial ideal of an ideal $I$ in a polynomial ring $R$ with respect to a term order. The goal of this note is to prove the conjecture.References
- Anna Maria Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm. Algebra 21 (1993), no. 7, 2317–2334. MR 1218500, DOI 10.1080/00927879308824679
- Henrik Bresinsky and Lê Tuân Hoa, On the reduction number of some graded algebras, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1257–1263. MR 1473657, DOI 10.1090/S0002-9939-99-04622-5
- A. Capani, G. Niesi, L. Robbiano, CoCoA, a system for doing Computations in Commutative Algebra, Available ftp from cocoa.dima.unige.it.
- Heather A. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Comm. Algebra 21 (1993), no. 7, 2335–2350. MR 1218501, DOI 10.1080/00927879308824680
- Srikanth Iyengar and Keith Pardue, Maximal minimal resolutions, J. Reine Angew. Math. 512 (1999), 27–48. MR 1703076, DOI 10.1515/crll.1999.055
- Keith Pardue, Deformation classes of graded modules and maximal Betti numbers, Illinois J. Math. 40 (1996), no. 4, 564–585. MR 1415019
- E. Sbarra, Upper bounds for local cohomology for rings with given Hilbert function, Comm. Algebra 29 (2001), 5383–5409.
- Ngô Viêt Trung, Gröbner bases, local cohomology and reduction number, Proc. Amer. Math. Soc. 129 (2001), no. 1, 9–18. MR 1695103, DOI 10.1090/S0002-9939-00-05503-9
- N. Trung, Constructive characterization of the reduction numbers, preprint 2001.
- Wolmer V. Vasconcelos, Cohomological degrees of graded modules, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 345–392. MR 1648669
Additional Information
- Aldo Conca
- Affiliation: Dipartimento di Matematica, Universitá di Genova, Via Dodecaneso 35, I-16146 Genova, Italia
- MR Author ID: 335439
- Email: conca@dima.unige.it
- Received by editor(s): September 24, 2001
- Received by editor(s) in revised form: October 29, 2001
- Published electronically: June 12, 2002
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 1015-1020
- MSC (2000): Primary 13P10, 13A30; Secondary 13F20
- DOI: https://doi.org/10.1090/S0002-9939-02-06607-8
- MathSciNet review: 1948090