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FUCHS’ PROBLEM 34 FOR MIXED ABELIAN GROUPS

ULRICH ALBRECHT

(Communicated by Stephen D. Smith)

Abstract. This paper investigates the extent to which an Abelian group A
is determined by the homomorphism groups Hom(A,G). A class C of Abelian
groups is a Fuchs 34 class if A and C in C are isomorphic if and only if
Hom(A,G) ∼= Hom(C,G) for all G ∈ C. Two p-groups A and C satisfy
Hom(A,G) ∼= Hom(C,G) for all groups G if and only if they have the same
nth-Ulm-Kaplansky-invariants and the same final rank. The mixed groups
considered in this context are the adjusted cotorsion groups and the class G
introduced by Glaz and Wickless. While G is a Fuchs 34 class, the class of
(adjusted) cotorsion groups is not.

1. Introduction

Fuchs’ Problem 34 asks whether there exists a set X of Abelian groups such that
Hom(A,G) ∼= Hom(C,G) for all G ∈ X implies A ∼= B. Goeters and the author
showed in [3] that, for every set X of p-groups, there exist non-isomorphic totally
projective p-groups A and C such that Hom(A,G) ∼= Hom(C,G) for all G ∈ X .
Nevertheless, reduced p-groups A and C such that Hom(A,G) ∼= Hom(C,G) for all
cyclic groups G have the same nth-Ulm-Kaplansky invariants for all n < ω provided
that one assumes GCH [3].

A class C of Abelian groups is a Fuchs 34 class if A and C in C are isomorphic
if and only if Hom(A,G) ∼= Hom(C,G) for all G ∈ C. Corollary 2.3 shows that
the classes of torsion-complete and Σ-cyclic p-groups are Fuchs 34. On the other
hand, the class of totally projective p-groups is not Fuchs 34: Reduced p-groups
A and C satisfy Hom(A,G) ∼= Hom(C,G) for all p-groups G if and only if they
have the same nth-Ulm-Kaplansky-invariants for all n < ω and the same final rank
(Theorem 2.4). In particular, the Σ-cyclic p-groups are the largest Fuchs 34 class of
p-groups which contains all cyclic groups and is closed with respect to direct sums.
Theorem 2.7 shows that there exist non-isomorphic adjusted cotorsion groups A
and C such that Hom(A,G) ∼= Hom(C,G) for all cotorsion groups G. Thus, the
class of (adjusted) cotorsion groups is not Fuchs 34. The author wants to thank
K. Rangaswamy for suggesting the discussion of cotorsion groups in the context of
Problem 34.

The class G of mixed Abelian groups introduced by Glaz and Wickless in [6]
is a Fuchs 34 class (Corollary 3.5). Its elements are the pure subgroups of ΠpGp
with finite torsion-free rank such that |Gp| <∞ for all primes p and Hom(G, tG) is
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torsion. Homological properties of the groups in G were investigated in [1], and we
will refer to the results of this paper frequently. As a consequence of our discussions,
we obtain a complete set of numerical invariants for the groups in G (Theorem 3.3
and Corollary 3.4).

2. p-groups

In order to avoid the set-theoretic difficulties in [3], Fuchs suggested replac-
ing the requirement Hom(A,G) ∼= Hom(C,G) for all G ∈ X by Hom(A,⊕IG) ∼=
Hom(C,⊕IG) for all index sets I and all G ∈ X since cardinals α and β such that
κα = κβ for all infinite cardinals κ satisfy α = β. The author wants to thank Gary
Gruenhage for pointing out that this result holds in ZFC.

Every unbounded Σ-cyclic p-group B can be written as B =
⊕

n<ω Bn with
Bn =

⊕
κn
Z/psnZ for n < ω where κn is a non-zero cardinal and 0 < s0 < s1 < . . .

are integers. By [5, Corollary 33.3], B is a basic subgroup of the torsion subgroup
of A =

∏
n<ω Bn. Choose a free subgroup F of A such that B ⊕ F is a p-basic

subgroup of A. The rank of F was incorrectly given as
∏
n<ω κn in [5].

For any sequence {αn}n<ω of cardinals, let π({αn}) = inf{
∏∞
i=n 2αi | n < ω}

and σ({αn}) = inf{
∑∞
i=n αi | n < ω}. There is m0 < ω, such that π({αn}) =∏∞

i=m 2αi and σ({αn}) =
∑∞

i=m αi for all m ≥ m0. Finally, the symbol r0(G)
denotes the torsion-free rank of the abelian group G.

Lemma 2.1. Let A =
∏
n<ω Bn be as in the previous two paragraphs with p-basic

subgroup F ⊕ B. Then, r0(F ) = π({κn}).
Proof. The proof of [5, Theorem 35.2] shows that F/pF ∼= A/(tA + pA). Since B
is a p-basic subgroup of tA, we have tA = B+p(tA), and hence tA+pA = B+pA.
Choose m0 such that π({κn}) =

∏∞
i=m 2κi and σ({κn}) =

∑∞
i=m κi for all m ≥ m0,

and write A = C ⊕ D where C = B0 ⊕ . . . ⊕ Bm0 and D =
∏
n>m0

Bn. Then,
B′ = B ∩D =

⊕
n>m0

Bn, and

A/(B + pA) ∼= D/[B′ + pD] ∼= (D/pD)/([B′ + pD]/pD).

As a Z/pZ-vector-space, D/pD has dimension π({κn}). On the other hand, B′ +
pD/pD ∼= B′/B′ ∩ pD = B′/pB′ since B′ is pure in D. But B′/pB′ has Z/pZ-
dimension σ({κn}). Since σ({κn}) < π({κn}), the groupA/(tA+pA) has dimension
π({κn}). Hence, r0(F ) = π({κn}).

Let µ and ν be cardinals. As in [5], define

d(µ, ν) =
{
µν if µ is finite,
(2ν)µ otherwise.

Proposition 2.2. The following are equivalent for reduced p-groups A and C:
a) fn(A) = fn(C) for all n < ω.
b) Hom(A,G) ∼= Hom(C,G) for all bounded p-groups G.
c) Hom(A,G) ∼= Hom(C,G) for all reduced p-groups G.

Proof. From [5], we obtain that the basic subgroup B of a p-group A has the form
B =

⊕
n<ω[

⊕
fn(A) Z/pn+1Z]. Therefore, fin r(B) = inf{

∑∞
i=n fi(A)|n < ω} =

σ({αn}) with αn = fn(A). Here, fn(A) denotes the nth-Ulm-Kaplansky invariant
of A.

a)⇒ c) : Obviously, it suffices to consider the case that G is a reduced p-group.
Let αn = fn(A) = fn(C) and λn = fn(G) for n < ω. Choose a basic subgroup B of
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A with κ = fin r(B). Every basic subgroup D of C is isomorphic to B. Finally, let
λ = fin r(G), and η = fin r(H) where H is a basic subgroup of G. By [5, Theorem
46.4], Hom(A,G) is a p-adic algebraically compact group whose basic submodule
is of the form F =

⊕
n<ω[

⊕
τn
Z/pn+1Z]⊕ [

⊕
ρ Jp] where ρ = d(κ, η) and

τn = d

(
αn, λ+

∞∑
k=n

λk

)
+ d

( ∞∑
k=n+1

αk, λn

)
.

Because none of the above invariants changes if A is replaced by C, the algebraically
compact groups Hom(A,G) and Hom(C,G) have isomorphic basic submodules.
This is only possible if they are isomorphic.

Since c)⇒ b) is obvious, it remains to show that b) implies a). For this, consider
n < ω, and let G =

⊕
κ Z/pn+2Z. Choose a basic subgroup B of A and observe

that

Hom(A,G) = Hom(A/pn+2A,G) ∼= Hom(B/pn+2B,G).

If gn(A) =
∑∞

i=n+1 fi(A), then

Hom(B/pn+2B,G) ∼=

 n⊕
k=0

 ⊕
d(fk(A),κ)

Z/pk+1Z

⊕
 ⊕
d(gn(A),κ)

Z/pn+2Z

 .
Therefore, d(fn(A), κ) = d(fn(C), κ). In case that fn(A) < ∞, choose κ = 1 so
that fn(A) = d(fn(A), 1) = d(fn(C), 1) <∞. Consequently, fn(C) has to be finite,
and fn(A) = fn(C). On the other hand, if fn(A) is infinite, then fn(C) has to
be infinite too. Let κ be infinite, and obtain d(fn(A), κ) = κfn(A). Therefore,
κfn(A) = κfn(C) for all infinite cardinals κ, i.e. fn(A) = fn(C) by the introductory
remarks.

Corollary 2.3. The classes of torsion-complete and Σ-cyclic p-groups are Fuchs
34 classes.

Proof. The class of torsion-complete groups contains all bounded p-groups. Since
Σ-cyclic and torsion-complete p-groups are determined up to isomorphism by their
finite Ulm-Kaplansky-invariants, an application of Proposition 2.2 completes the
proof.

We now turn to the question of which other invariants of a p-group A are deter-
mined by Hom(A,G):

Theorem 2.4. The following are equivalent for reduced p-groups A and C:

a) i) fn(A) = fn(C) for all n < ω.
ii) fin r(A) = fin r(C).

b) Hom(A,E) ∼= Hom(C,E) for all divisible groups E.
c) Hom(A,G) ∼= Hom(C,G) for all groups G.
d) Ext(A,G) ∼= Ext(C,G) for all torsion-free groups G.

Proof. a) ⇒ c): Because of Proposition 2.2, it remains to consider the case that
G is a divisible p-group. We choose lower basic subgroups B and D of A and C
respectively, i.e. A/B ∼= C/D ∼=

⊕
λ Z(p∞) where λ = fin r(A) = fin r(C). The
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pure exact sequence 0 → Hom(A/B,G) → Hom(A,G) → Hom(B,G) → 0 splits
since Hom(A/B,G) is algebraically compact. Thus,

Hom(A,G) ∼= Hom(A/B,G)⊕ Hom(B,G)
∼= Hom(C/D,G)⊕Hom(D,G) ∼= Hom(C,G).

c) ⇒ d): Let G be a torsion-free group, and 0 → G →
⊕

I Q → E → 0 an
exact sequence with E torsion. It induces the sequence 0 = Hom(A,

⊕
I Q) →

Hom(A,E)→ Ext(A,G)→ Ext(A,
⊕

I Q) = 0, from which

Ext(A,G) ∼= Hom(A,E) ∼= Hom(C,E) ∼= Ext(C,G)

follows.
d)⇒ b): Let E be a divisible p-group, and consider an exact sequence 0→ U →⊕
I Q → E → 0 for some suitable index-set I. Arguing as in c) ⇒ d) yields the

first and third isomorphism in Hom(C,E) ∼= Ext(C,U) ∼= Ext(A,U) ∼= Hom(A,E).
b) ⇒ a): Consider lower basic subgroups B and D of A and C respectively.

Then, A/B ∼=
⊕

λA
Z(p∞) and C/D ∼=

⊕
λC
Z(p∞) where λA = fin r(A) and

λC = fin r(C). Write B =
⊕

n<ω[
⊕

αn
Z/pn+1Z] and C =

⊕
n<ω[

⊕
βn
Z/pn+1Z],

and consider a divisible p-group E =
⊕

κ Z(p∞). As in the proof of a) ⇒ c), we
obtain Hom(A,E) = Hom(A/B,E) ⊕ Hom(B,E). Observe that Hom(A/B,E) is
torsion-free. Because of [5, Chapter 47],

Hom(B,E) ∼=
∏
n<ω

∏
αn

[⊕
κ

Z/pn+1Z

]
=
∏
n<ω

 ⊕
d(αn,κ)

Z/pn+1Z

 .
By [5, Corollary 33.3], fn(Hom(A,E)) = d(αn, κ). Similarly, we obtain

fn(Hom(C,E)) = d(βn, κ).

Hence, d(αn, κ) = d(βn, κ) for all n < ω. As in the proof of Proposition 2.2, one
obtains α = β.

If A has finite final rank, then A is bounded, and the same has to hold for C,
since A and C have isomorphic basic subgroups by what has been shown so far. In
particular, both A and C have final rank 0. Hence, we may assume that A and C
are both unbounded. Choose E in such a way that κ is infinite.

Since A and C have isomorphic basic subgroups B and D, we may rewrite these
as B ∼= D ∼=

⊕
n<ω[

⊕
γn
Z/psnZ] where γn is a non-zero cardinal for all n < ω, and

0 < s0 < s1 < . . . are integers. Then, Hom(B,E) ∼=
∏
n<ω[

⊕
λn
Z/pn+1Z] where

λn = d(γn, κ) is infinite. By Lemma 2.1, the torsion-free rank of any basic subgroup
of Hom(B,E) is π({λn}) =

∏∞
n=m λn for some suitable m < ω. Moreover, m can

be chosen in such a way that σ({λn}) =
∑∞

n=m γn.
On the other hand, Hom(A/B,E) is a torsion-free algebraically compact group

which is the completion of
⊕

d(λA,κ) Jp (see [5]). Therefore, every p-basic subgroup
of Hom(A,E) has torsion-free rank d(λA, κ) + π({λn}). In the same way, the
torsion-free rank of a p-basic subgroup of Hom(C,E) is d(λC , κ) + π({λn}). If
γn is finite for some n, then λn = γnκ = κ = κγn . On the other hand, for
infinite γn’s, we obtain λn = [2κ]γn = κγn . In either case, λn is infinite, and hence
π({λn}) =

∏∞
n=m 2λn =

∏∞
n=m κ

γn = κσ({γn}) for some m < ω. Since A and C

are unbounded, λA and λC are infinite. Thus, d(λA, κ) = κλA and d(λC , κ) = κλC .
Hence, κλA + κσ({γn}) = κλC + κσ({γn}) for all κ. Since σ({γn}) = fin r(B) ≤
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fin r(A) = λA, one obtains κλA = κλA + κσ({γn}). By symmetry, κλA = κλC for
all infinite cardinals κ, and hence λA = λC .

Corollary 2.5. The class of Σ-cyclic p-groups is the largest Fuchs 34 class of p-
groups which contains all the cyclic groups and is closed under direct sums.

Proof. Obviously, the class of Σ-cyclic p-groups has the stated property by The-
orem 2.4. Let C be any class with the above properties, and choose C ∈ C. The
basic subgroup A of C is Σ-cyclic and satisfies fn(A) = fn(C) for all n < ω
and fin r(A) ≤ fin r(C). Moreover, no generality is lost if we assume that
λ = fin r(C) is infinite. Then, fn(

⊕
λA) = fn(

⊕
λC) for all n < ω and

fin r(
⊕

λA) = λ = fin r(
⊕

λ C). Since C contains all cyclic p-groups and is
closed with respect to direct sums,

⊕
λA
∼=
⊕

λ C. Thus, C is Σ-cyclic.

Example 2.6. Let B be a basic subgroup of the generalized Prüfer group Hω+1.
Then, A = Hω+1 ⊕ B and C = Hω+1 ⊕ Hω+1 have final rank ℵ0 and satisfy
fn(A) = fn(C) = 2. Since fω(A) = 1 and fω(C) = 2, we have A 6∼= C although
Hom(A,G) ∼= Hom(C,G) for all groups G.

The class of adjusted cotorsion groups consists of those reduced groups G with
Ext(Q, G) = 0 which have no non-zero torsion-free direct summands.

Theorem 2.7. There exist non-isomorphic adjusted cotorsion groups A and C
such that Hom(A,G) ∼= Hom(C,G) for all cotorsion groups G.

Proof. Choose adjusted cotorsion groups A and C whose torsion subgroups are
countable p-groups of length ω + 1 such that tA 6∼= tC, but fn(tA) = fn(tC) for
all n < ω and fin r(A) = fin r(C). Such groups exist by [5, Theorem 55.5] and
Example 2.6. To show Hom(A,G) ∼= Hom(C,G) for a cotorsion group G, write
G = H ⊕ K ⊕ D ⊕ E where H is an adjusted cotorsion group, K is a reduced
torsion-free algebraically compact group, D is torsion-free and divisible, and E is
torsion and divisible. Observe that Hom(tA,E) ∼= Hom(tC,E) by Theorem 2.4.

Cotorsion groups are discussed in detail in [5]. In particular, since A is an
adjusted cotorsion group, A ∼= Ext(Q/Z, tA), and A/tA is divisible. Therefore,
Hom(A,K) = Hom(A/tA,K) = 0 = Hom(C,K). Moreover, we obtain an exact
sequence

0 = Hom(A/tA,H)→ Hom(A,H)→ Hom(tA,H)→ Ext(A/tA,H) = 0

in which the last term vanishes since H is cotorsion. Therefore,

Hom(A,H) ∼= Hom(tA,H) = Hom(tA, tH).

By what has been shown so far,

Hom(A,H) ∼= Hom(tA, tH) ∼= Hom(tC, tH) ∼= Hom(C,H).

To show Hom(A,D) ∼= Hom(C,D) and Hom(A,E) ∼= Hom(C,E), it suffices to
establish that A and C have cardinality 2ℵ0 . Then, A/tA ∼= C/tC ∼=

⊕
2ℵ0 Q,

and Hom(A,D) ∼= Hom(A/tA,D) ∼= Hom(C,D). Moreover, the exact sequence
0→ Hom(A/tA,E)→ Hom(A,E)→ Hom(tA,E)→ 0 splits since A/tA is torsion-
free and divisible. Then,

Hom(A,E) ∼= Hom(A/tA,E)⊕Hom(tA,E)
∼= Hom(C/tC,E)⊕Hom(tC,E) ∼= Hom(C,E)
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by what has been established so far. To show that |A| = 2ℵ0 , set T = pωA, and ob-
serve thatB = tA/T is unbounded and a direct sum of cyclics as a countable separa-
ble group. Moreover, T is bounded since A has length ω+1. The exact sequence 0 =
Ext(Q, T )→ Ext(Q, tA)→ Ext(Q, B)→ 0 yields A/tA ∼= Ext(Q, tA) ∼= Ext(Q, B).
If T1 is the torsion-complete group with basic subgroup B, then T1 is uncountable,
and there exists an exact sequence 0 = Hom(Q, T1)→ Hom(Q, T1/B)→ Ext(Q, B),
from which we obtain |A/tA| ≥ 2ℵ0 . On the other hand, since A/tA is torsion-free
divisible, every basic subgroup of tA is a basic subgroup of the p-local group A.
Because tA is countable, |A| ≤ ℵℵ0

0 by [5, Theorem 34.3]. A similar argument yields
|C| = 2ℵ0 .

In particular, the last result shows that the class of (adjusted/reduced) cotorsion
groups is not a Fuchs 34 class.

3. Fuchs’ problem 34 in G

In [1], it was shown that every group A ∈ G can be written as A = A1⊕ . . .⊕An
where each Ai is essentially indecomposable. Moreover, the Ai’s are unique up
to quasi-isomorphism after a possible reordering. We denote the embeddings and
projections associated with this decomposition by δAj : Aj → A and πAj : A → Aj
for j = 1, . . . , n respectively. The superscripts referring to A are omitted, unless
they are necessary to avoid confusion.

For a prime p, let A(p) denote the p-component of A in order to avoid confusion
with the Ai’s. Given a non-zero integer m, every group A in G can be written as
A = A(m) ⊕ A(m) such that A(m) = A(p1) ⊕ . . . ⊕ A(pn) where p1, . . . , pn are the
primes dividing m, and multiplication by m is an automorphism of A(m). Observe
that A(m) and A(m) are fully invariant subgroups of A.

Given Abelian groups A and G, the A-socle of G is SA(G) = 〈φ(A) |
φ ∈ Hom(A,G)〉. The group G is (finitely) A-generated if it is an epimorphic
image of

⊕
I A for some (finite) index set I. Clearly, G is A-generated if and only

if SA(G) = G.

Lemma 3.1. Let A and G be in G.
a) If G is a subgroup of an Abelian group H such that H/G is torsion, then

H = G+ tH.
b) If W ⊆ SA(G), then there is a finitely A-generated subgroup U of W such

that W = U + tW .
c) tHom(A,G) = Hom(A, tG) and Hom(A,G)/tHom(A,G) has finite rank and

is torsion-free divisible.

Proof. a) For x ∈ H , there is a non-zero integer m such that mx ∈ G. Write
G = G(m)⊕G(m), and choose u ∈ G(m) and v ∈ G(m) such that mx = u+ v. Since
multiplication by m is an automorphism of G(m), there is w ∈ G(m) with v = mw.
Then, m(x − w) = u ∈ G(m) ⊆ tH , and hence x− w ∈ tH .

b) Since G ∈ G, the group W has finite torsion-free rank, and there is a finitely
A-generated subgroup U of W such that W/U is torsion. By [1, Theorem 2.2(a)],
U ∈ G, and a) yields W = U + tW .

c) Since G ∈ G, the group SA(tG) is a reduced A-generated torsion group and
has the property that Hom(A, tG) is torsion by [1, Lemma 2.1(b)]. Therefore,
Hom(A, tG) ⊆ tHom(A,G), while the other inclusion is obvious.
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Consider the induced sequence

0→ Hom(A/tA,G/tG)→ Hom(A,G/tG)→ Hom(tA,G/tG) = 0

which yields that Hom(A,G/tG) is torsion-free and divisible of finite rank. More-
over, because of the sequence

0→ Hom(A, tG)→ Hom(A,G)→ Hom(A,G/tG)

and in view of the fact that Hom(A, tG) is torsion, we obtain

r0(Hom(A,G)) ≤ r0(Hom(A,G/tG)) <∞.

Finally, let α ∈ Hom(A,G) and m be a non-zero integer. Write A = A(m) ⊕
A(m) and G = G(m) ⊕ G(m), and obtain α = αm + α(m) such that αm(A(m)) =
0 = α(m)(A(m)). Since multiplication by m is an automorphism of G(m), there
is β ∈ Hom(A(m), G(m)) with α(m)|A(m) = mβ. We extend β to a map β̃ :
A → G by β̃(A(m)) = 0, and obtain α − mβ̃ = αm ∈ tHom(A,G). Thus,
Hom(A,G)/tHom(A,G) is divisible.

The endomorphism ring of an Abelian groupA will be denoted by E(A) or simply
E if there is no possibility for confusion. Given an E-module M , the symbol M
denotes the E = E/tE-module M/tM . Finally, N(R) is the nilradical of a ring R.

Lemma 3.2. Let A ∈ G and α : Ai → Aj be a map. Suppose that tE ⊆ N is an
ideal of E such that N = N(E).

a) If Ai and Aj are not quasi-isomorphic, then δjαπi ∈ N .
b) If ker α is not bounded, then δjαπi ∈ N .
c) A map α : Ai → Aj with a bounded kernel is a quasi-isomorphism.

Proof. a) Assume δjαπi 6∈ N , and observe that it has to have infinite order. Suppose
there is σ ∈ E such that πiσδjα 6∈ N(E(Ai)). Since E(Ai) is local, there is a map
β ∈ E(Ai) such that βπiσδjα = 1Ai . Hence, we can choose a non-zero integer k such
that kβπiσδjα = k1Ai. If we write Ai = (Ai)(k) ⊕ A(k)

i , then β|
A

(k)
i

: A(k)
i → A

(k)
i ,

and β|
A

(k)
i

(πiσδjα)|
A

(k)
i

= 1
A

(k)
i

since multiplication by k is an automorphism of

A
(k)
i . Therefore, (βπiσδj)|A(k)

j
is a splitting map for α|

A
(k)
i

, and A(k)
j = α(A(k)

i )⊕U

for some subgroup U of A(k)
j . Moreover, α|

A
(k)
i

is one-to-one. Since δjαπi has

infinite order and (Ai)(k) is finite, α(A(k)
i ) cannot be bounded. Hence, U has to

be finite because Aj is essentially indecomposable. Consequently, α|
A

(k)
i

is a quasi-
isomorphism, and Ai ∼ Aj , a contradiction.

Therefore, πiσδjα ∈ N(E(Ai)) which is nilpotent. There is m < ω such that
(πiσδjα)m ∈ tE(Ai). Then, (σδjαπi)m+1 = σδjα(πiσδjα)mπi ∈ tE. Consider the
left ideal I = Eδjαπi of E, and observe that I is a nil ideal by what has been shown
so far. Since E is Artinian, I is nilpotent and I ⊆ N(E(A)) = N , a contradiction.

b) Suppose that α has an unbounded kernel. Assume δjαπi 6∈ N , and consider
σ ∈ E. If πiσδjα 6∈ N(E(Ai)), then there is a map β ∈ E(Ai) such that βπiσδjα =
1Ai . As in a), we obtain that α|

A
(k)
i

splits for some non-zero integer k. In particular,

α has to have a bounded kernel, a contradiction. Thus, πiσδjα ∈ N(E(Ai)), and
we obtain a contradiction arguing as in a).
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c) Select an integer m such that m ker α = 0 and write Ai = (Ai)(m) ⊕ A(m)
i .

Then, α|
A

(m)
i

: A(m)
i → A

(m)
i is a monomorphism which quasi-splits by [4, Theorem

2.2], say βα|
A

(m)
i

= k1
A

(m)
i

for some non-zero integer k. Therefore, A(km)
i is a

direct summand of A(m)
i with finite complement, and A

(km)
i = α(A(km)

i ) ⊕ U for
some subgroup U of Ai. Since Ai is essentially indecomposable, U is finite, and
Ai/α(Ai) is finite, establishing that α is a quasi-isomorphism.

Theorem 3.3. Groups A and B in G such that tA ∼= tB are isomorphic if

r0(Hom(A,G)) = r0(Hom(B,G))

for all G ∈ G.

Proof. If A and B are torsion, then there is nothing to prove. Thus, assume
that r0(A) > 0, and observe that B cannot be torsion since every torsion group
in G is finite while tA is infinite. There are essentially indecomposable groups
A1, . . . , An and B1, . . . , Bm such that A = A1 ⊕ . . .⊕An, B = B1 ⊕ . . .⊕Bm, and
r0(Ai), r0(Bj) > 0 for all i and j. We induct on n+m with n+m = 0 being trivial
as already mentioned. Thus, assume n+m > 0, from which we immediately obtain
n > 0 and m > 0.

Observe r0(E(B)) = r0(Hom(A,B)) = r0(Hom(A,SA(B))). While SA(B) may
not be in G, it contains a finitely A-generated subgroup H ∈ G by Lemma 3.1 such
that SA(B) = H + tB since tA ∼= tB guarantees tB ⊆ SA(B). But SA(B)/H =
(H+tB)/H ∼= tB/(H∩tB) is an A-generated reduced torsion group. In particular,
Hom(A,SA(B)/H) is torsion by [1, Lemma 2.1(b)]. Hence, the last term in the
sequence

0→ Hom(A,H)→ Hom(A,SA(B))→ Hom(A,SA(B)/H)

is torsion, and r0(Hom(A,SA(B)) = r0(Hom(A,H)). Therefore,

r0(E(B)) = r0(Hom(A,H)) = r0(Hom(B,H))
≤ r0(Hom(B,SA(B))) ≤ r0(E(B)) <∞.

Therefore, I = Hom(B,SA(B)) is a right ideal of E(B) such that E(B)/I is torsion
as an Abelian group. On the other hand, since tB ⊆ SA(B), we have tE(B) ⊆ I

and E(B)/I ∼= E(B)/I is torsion-free and divisible by Lemma 3.1(c). Therefore,
I = E(B) from which B = SA(B) follows. By symmetry, SB(A) = A.

Choose a two-sided idealNB of E(B) containing tE(B) such thatNB=N(E(B)).
Since E(B)/NB ∼= E(B)/NB is torsion-free and divisible as an Abelian group,
the group B/NBB ∼= [E(B)/NB] ⊗E(B) B has these properties too. Moreover,
B 6= NBB since the fact that N(E(B)) is nilpotent yields Nk

B ⊆ tE(B) for some
k < ω. Consequently, B = NBB would yield B = Nk

BB ⊆ tB contradicting the
fact that B is not torsion. Since B = SA(B), there is a map φ : A → B such
that φ(A) 6⊆ NBB. From φ(A) = φ(A1) + . . . + φ(An), we obtain φ(Ai) 6⊆ NBB
for some i ∈ {1, . . . , n}. No generality is lost if we assume φ(A1) 6⊆ NBB. Since
A1 = SB(A1) =

∑m
j=1 SBj (A1), one can find an index j ∈ {1, . . . ,m} such that

φ(SBj (Ai)) 6⊆ NBB. Without loss of generality, j = 1. Hence, there is a map
γ : B1 → A1 such that φγ(B1) 6⊆ NBB. Choose x0 ∈ B1 such that φγ(x0) 6∈ NBB.
Since, φγ(x) =

∑m
j=1 δ

B
j π

B
j φγ(x) for all x ∈ B1, there is j ∈ {1, . . . ,m} such that

δBj π
B
j φγ(x0) 6∈ NBB.
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If B1 and Bj are not quasi-isomorphic, then the map πBj φγ : B1 → Bj satisfies
δBj π

B
j φγπ

B
1 ∈ NB by Lemma 3.2(a). Hence, δBj π

B
j φγπ

B
1 (x0) ∈ NBB, a contra-

diction. Therefore, B1 and Bj are quasi-isomorphic. By part b) of Lemma 3.2,
ker πBj φγ has to be bounded using the same arguments as before. Part c) of Lemma
3.2 gives that πBj φγ : B1 → Bj is a quasi-isomorphism. But then, the map γ : B1 →
A1 quasi-splits. Since A1 is essentially indecomposable, ker γ and A1/γ(B1) are
finite, and A1 ∼ B1. If α1 : A1 → B1 and β1 : B1 → A1 satisfy α1β1 = k1B1

and β1α1 = k1A1 for some non-zero integer k, write A1 = (A1)(k) ⊕ A
(k)
1 and

B1 = (B1)(k) ⊕ B(k)
1 . In particular, α1|A(k)

1
: A(k)

1 → B
(k)
1 is an isomorphism. Ob-

serve that A = A(k) ⊕A(k) and B = B(k) ⊕B(k) yield A(k) = A
(k)
1 ⊕ . . .⊕A(k)

n and
B(k) = B

(k)
1 ⊕ . . .⊕B(k)

m . Because tA ∼= tB gives A(k)
∼= B(k), we may assume that

A1
∼= B1. Then, t(A2 ⊕ . . .⊕An) ∼= t(B2 ⊕ . . .⊕Bm) since A(p) and B(p) are finite

for all primes p. Finally, setting A′ = A2⊕ . . .⊕An and B′ = B2⊕ . . .⊕Bm yields

r0(Hom(A′, G)) = r0(Hom(A,G)) − r0(Hom(A1, G))
= r0(Hom(B,G)) − r0(Hom(B1, G))
= r0(Hom(B′, G))

for all G ∈ G since A1
∼= B1. By induction, A′ ∼= B′, and we are done.

Corollary 3.4. Let A and B be in G. Then, A ∼= B if and only if
i) r0(Hom(A,G)) = r0(Hom(B,G)) for all G ∈ G.
ii) fn(A(p)) = fn(B(p)) for all n < ω and all primes p.

Corollary 3.5. G is a Fuchs 34 class.

Proof. Let A and B be in G such that Hom(A,G) ∼= Hom(B,G) for all G ∈ G.
In particular, Hom(A,G) and Hom(B,G) have the same torsion-free rank for all
G ∈ G. In order to be able to apply Theorem 3.3, it remains to show that tA ∼= tB.
Let p be a prime, and choose n < ω such that pnA(p) = pnB(p) = 0. Select a
group G ∈ G such that G(p)

∼= Z/pnZ. Observe that A(p)
∼= Hom(A,G(p)) =

Hom(A,G)(p)
∼= Hom(B,G)(p)

∼= B(p) because of part c) of Lemma 3.1.
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