Finiteness of representation dimension
HTML articles powered by AMS MathViewer
- by Osamu Iyama PDF
- Proc. Amer. Math. Soc. 131 (2003), 1011-1014 Request permission
Abstract:
We will show that any module over an artin algebra is a direct summand of some module whose endomorphism ring is quasi-hereditary. As a conclusion, any artin algebra has a finite representation dimension.References
- M. Auslander: Representation dimension of Artin algebras, Lecture notes, Queen Mary College, London, 1971.
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549โ559 (German). MR 96, DOI 10.2307/1968939
- E. Cline, B. Parshall, and L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85โ99. MR 961165
- Vlastimil Dlab and Claus Michael Ringel, Quasi-hereditary algebras, Illinois J. Math. 33 (1989), no.ย 2, 280โ291. MR 987824
- Vlastimil Dlab and Claus Michael Ringel, Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring, Proc. Amer. Math. Soc. 107 (1989), no.ย 1, 1โ5. MR 943793, DOI 10.1090/S0002-9939-1989-0943793-2
- Robert M. Fossum, Phillip A. Griffith, and Idun Reiten, Trivial extensions of abelian categories, Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin-New York, 1975. Homological algebra of trivial extensions of abelian categories with applications to ring theory. MR 0389981
- P. J. Hilton and U. Stammbach, A course in homological algebra, 2nd ed., Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997. MR 1438546, DOI 10.1007/978-1-4419-8566-8
- O. Iyama: $\tau$-categories II: Nakayama pairs and rejective subcategories, to appear in Algebras and Representation theory.
- O. Iyama: $\tau$-categories III: Auslander orders and Auslander-Reiten quivers, to appear in Algebras and Representation theory.
- O. Iyama: A proof of Solomonโs second conjecture on local zeta functions of orders, to appear in J. Algebra.
- K. Igusa, G. Todorov: On the finitistic global dimension conjecture, preprint.
- Hiroyuki Tachikawa, Quasi-Frobenius rings and generalizations. $\textrm {QF}-3$ and $\textrm {QF}-1$ rings, Lecture Notes in Mathematics, Vol. 351, Springer-Verlag, Berlin-New York, 1973. Notes by Claus Michael Ringel. MR 0349740
- Changchang Xi, On the representation dimension of finite dimensional algebras, J. Algebra 226 (2000), no.ย 1, 332โ346. MR 1749892, DOI 10.1006/jabr.1999.8177
- C. C. Xi: Representation dimension and quasi-hereditary algebras, to appear in Adv. Math.
Additional Information
- Osamu Iyama
- Affiliation: Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan
- Address at time of publication: Department of Mathematics, Himeji Institute of Technology, Himeji, 671-2201, Japan
- MR Author ID: 634748
- Email: iyama@kusm.kyoto-u.ac.jp, iyama@sci.himeji-tech.ac.jp
- Received by editor(s): August 6, 2001
- Received by editor(s) in revised form: October 29, 2001
- Published electronically: July 17, 2002
- Communicated by: Martin Lorenz
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 1011-1014
- MSC (2000): Primary 16G10; Secondary 16E10
- DOI: https://doi.org/10.1090/S0002-9939-02-06616-9
- MathSciNet review: 1948089