Borel subrings of the reals
HTML articles powered by AMS MathViewer
- by G. A. Edgar and Chris Miller PDF
- Proc. Amer. Math. Soc. 131 (2003), 1121-1129 Request permission
Abstract:
A Borel (or even analytic) subring of $\mathbb R$ either has Hausdorff dimension $0$ or is all of $\mathbb R$. Extensions of the method of proof yield (among other things) that any analytic subring of $\mathbb C$ having positive Hausdorff dimension is equal to either $\mathbb R$ or $\mathbb C$.References
- Charalambos D. Aliprantis and Owen Burkinshaw, Principles of real analysis, North-Holland Publishing Co., New York-Amsterdam, 1981. MR 607327
- Stefan Banach, Théorie des opérations linéaires, Éditions Jacques Gabay, Sceaux, 1993 (French). Reprint of the 1932 original. MR 1357166
- Donald L. Cohn, Measure theory, Birkhäuser, Boston, Mass., 1980. MR 578344
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Gerald A. Edgar, Integral, probability, and fractal measures, Springer-Verlag, New York, 1998. MR 1484412, DOI 10.1007/978-1-4757-2958-0
- G. Edgar and C. Miller, Hausdorff dimension, analytic sets and transcendence, Real Anal. Exchange, 27 (2001/02), 335–339.
- Paul Erdős and Bodo Volkmann, Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math. 221 (1966), 203–208 (German). MR 186782
- K. J. Falconer, Rings of fractional dimension, Mathematika 31 (1984), no. 1, 25–27. MR 762173, DOI 10.1112/S0025579300010615
- K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1985), no. 2, 206–212 (1986). MR 834490, DOI 10.1112/S0025579300010998
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Band 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
- F. Topsøe and J. Hoffmann-Jørgensen, Analytic spaces and their application, Analytic Sets, Academic Press, London, 1980, pp. 317–401.
- J. D. Howroyd, On dimension and on the existence of sets of finite positive Hausdorff measure, Proc. London Math. Soc. (3) 70 (1995), no. 3, 581–604. MR 1317515, DOI 10.1112/plms/s3-70.3.581
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- Karl R. Stromberg, Introduction to classical real analysis, Wadsworth International Mathematics Series, Wadsworth International, Belmont, Calif., 1981. MR 604364
- Bodo Volkmann, Eine metrische Eigenshaft reeller Zahlkörper, Math. Ann. 141 (1960), 237–238 (German). MR 117316, DOI 10.1007/BF01380449
- Helmut Wegmann, Die Hausdorff-Dimension von kartesischen Produkten metrischer Räume, J. Reine Angew. Math. 246 (1971), 46–75 (German). MR 273585, DOI 10.1515/crll.1971.246.46
- André Weil, Basic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag New York, Inc., New York, 1967. MR 0234930
Additional Information
- G. A. Edgar
- Affiliation: Department of Mathematics, The Ohio State University, 231 West Eighteenth Avenue, Columbus, Ohio 43210
- Email: edgar@math.ohio-state.edu
- Chris Miller
- Affiliation: Department of Mathematics, The Ohio State University, 231 West Eighteenth Avenue, Columbus, Ohio 43210
- Email: miller@math.ohio-state.edu
- Received by editor(s): October 29, 2001
- Published electronically: June 12, 2002
- Additional Notes: Research of the second author was supported by NSF grant no. DMS-9988855
- Communicated by: David Preiss
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 1121-1129
- MSC (2000): Primary 28A78; Secondary 03E15, 11K55, 12D99, 28A05
- DOI: https://doi.org/10.1090/S0002-9939-02-06653-4
- MathSciNet review: 1948103